reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
print([A007787(n) for n in range(1, 20)]) # _Seiichi Manyama_, Apr 06 2020
Seiichi Manyama, <a href="/A007787/b007787.txt">Table of n, a(n) for n = 1..1000</a>
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A064298(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
start, goal = 1, k * n
paths = GraphSet.paths(start, goal)
return paths.len()
def A007787(n):
return A064298(n, 5)
print([A007787(n) for n in range(1, 20)])
1, 16, 125, 976, 8512, 79384, 752061, 7110272, 67005561, 630588698, 5933085772, 55827318685, 525343024814, 4943673540576, 46521924780255, 437788749723725, 4119750109152730, 38768318191017931, 364823700357765771, 3433121323699285343
approved
editing
F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamilton Hamiltonian cycles in product graphs</a>
proposed
approved
editing
proposed