(MAGMAMagma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(11-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)-Exp(6*x)-Exp(7*x)-Exp(8*x)-Exp(9*x)-Exp(10*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
(MAGMAMagma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(11-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)-Exp(6*x)-Exp(7*x)-Exp(8*x)-Exp(9*x)-Exp(10*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
proposed
approved
editing
proposed
Expansion of 1/(11-exp(x)-exp(2*x)-exp(3*x)-exp(4*x)-exp(5*x)-exp(6*x)-exp(7*x)-exp(8*x)-exp(9*x)-exp(10*x)).
Expansion of 1/(11 - Sum_{k=1..10} exp(k*x)).
Equals expansion of 1/(11-exp(x)-exp(2*x)-exp(3*x)-exp(4*x)-exp(5*x)-exp(6*x)-exp(7*x)-exp(8*x)-exp(9*x)-exp(10*x)).
(PARI) x='x+O('x^30); Vec(serlaplace(1/(11-exp(x)-exp(2*x)-exp(3*x)-exp(4*x)-exp(5*x)-exp(6*x)-exp(7*x)-exp(8*x)-exp(9*x)-exp(10*x)))) \\ G. C. Greubel, Oct 09 2018
(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(11-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)-Exp(6*x)-Exp(7*x)-Exp(8*x)-Exp(9*x)-Exp(10*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
approved
editing
proposed
approved
editing
proposed
Vincenzo Librandi, <a href="/A004708/b004708.txt">Table of n, a(n) for n = 0..200</a>
With[{nn=20}, CoefficientList[Series[1/(11-Exp[x]-Exp[2*x]-Exp[3*x]-Exp[4*x]-Exp[5*x]-Exp[6*x]-Exp[7*x]-Exp[8*x]-Exp[9*x]-Exp[10*x]), {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Jun 15 2012 *)
approved
editing
_N. J. A. Sloane (njas(AT)research.att.com)_.
nonn,new
nonn
N. J. A. Sloane (njas(AT)research.att.com).
nonn,new
nonn