(MAGMAMagma) [n*(7*n^2-1)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(MAGMAMagma) [n*(7*n^2-1)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
editing
approved
a(n) = n^3 + Sum_{k=0..n-1} k*(k+1)/2 for n>0. Equivalently, Alternately, a(n) = A000578(n) + A000292(n-1) for n>0. - Bruno Berselli, May 23 2018
proposed
editing
editing
proposed
a(n) = n^3 + Sum_{k=0..n-1} k*(k+1)/2 for n>0. Equivalently, a(n) = A000578(n) + A000292(n-1) for n>0. - Bruno Berselli, May 23 2018
a(n) = n^3 + Sum_{k=0..n-1} k*(k+1)/2 for n>0. Equivalently, a(n) = A000578(n) + A000292(n-1). - Bruno Berselli, May 23 2018
approved
editing
proposed
approved
editing
proposed
Sum of n triangular numbers starting from T(n), where T = A000217. E.g., a(4) = T(4) + T(5) + T(6) + T(7) = 10 + 15 + 21 + 28 = 74. - Amarnath Murthy, Jul 16 2004
Also as a(n) = (1/6)*(7*n^3-n), n>0: structured heptagonal diamond numbers (vertex structure 8). Cf. A100179 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).
a(n) = Sum_{i = n..2*n-1} A000217(i). - Bruno Berselli, Sep 06 2017
Table[n (7n7 n^2 - 1)/6, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
(Maxima) A004126(n):=n*(7*n^2-1)/6$ makelist(A004126n*(7*n^2-1), /6, n, 0, 30); /* Martin Ettl, Jan 08 2013 */
approved
editing
editing
approved