editing
approved
editing
approved
0, 1, 5, 13, 27, 48, 78, 118, 170, 235, 315, 411, 525, 658, 812, 988, 1188, 1413, 1665, 1945, 2255, 2596, 2970, 3378, 3822, 4303, 4823, 5383, 5985, 6630, 7320, 8056, 8840, 9673, 10557, 11493, 12483, 13528, 14630, 15790, 17010, 18291, 19635, 21043, 22517, 24058
approved
editing
editing
approved
a(n) = (w(w+1)(4w-3(-1)^n+2)+n(n+1)(n+2))/6, with w:=floor(n/2) - Steve Warson, Mar 21 2023
proposed
editing
editing
proposed
a(n) = Sum_{i=1..n} T(n-i+1)+T(n-2*i+1), where T(n)=n*(n+1)/2=A000217(n) if n>0 and 0 if n<=0. So we have a(n+2)-a(n)=(n+2)^2+(n+1)*(n+2)/2. - Maurice Mischler, Sep 08 2014
proposed
editing
editing
proposed
G.f. : a(n) = (w(w+1)(4w-3(-1)^n+2)+n(n+1)(n+2))/6, with w:=floor(n/2) - Steve Warson 03/, Mar 21/ 2023
proposed
editing
editing
proposed