(MAGMAMagma) [2^n - Binomial(n, 0)- Binomial(n, 1) - Binomial(n, 2) - Binomial(n, 3): n in [0..35]]; // Vincenzo Librandi, May 20 2011
(MAGMAMagma) [2^n - Binomial(n, 0)- Binomial(n, 1) - Binomial(n, 2) - Binomial(n, 3): n in [0..35]]; // Vincenzo Librandi, May 20 2011
Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, <a href="https://arxiv.org/ftp/arxiv/papers/0911abs/0911.4975.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.
Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articlesA000051/FonctionsGeneratricesa000051_2.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, Appendix to Thesis, Montreal, 1992.
Simon Plouffe, <a href="httphttps://www.lacim.uqamarxiv.caorg/ftp/arxiv%7Eplouffepapers/articles0911/MasterThesis0911.4975.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.
proposed
approved
editing
proposed
a(n) = 2^n - C(n,0) - C(n,1) - C(n,2) - C(n,3).
The sequence starting (1, 6, 22, ...) is the binomial transform of A171418 and starting (0, 0, 0, 1, 6, 22, ...) is the binomial transform of (0, 0, 0, 1, 2, 2, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
a(n) = 2^n - A000125(n).
proposed
editing
editing
proposed
R. K. Guy, <a href="/A000346/a000346.pdf">Letter to N. J. A. Sloane</a>
approved
editing