reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^2 * binomial(n-1, k). Cf. A361716.
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^2 * binomial(n-1, k). - _From _Peter Bala_, Oct 31 2024: (Start)
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^2 * binomial(n-1, k).
For n >= 1, a(n) = 2 * hypergeom([-n, -n, -n + 1], [1, 1], -1). (End)
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^2 * binomial(n-1, k). - Peter Bala, Oct 31 2024
approved
editing
editing
approved
Column k=3 of A372307.
approved
editing
a(n) = Sum_{k = floor(n/2)..n} binomial(n, k)^2*binomial(2*k, n). - Peter Bala, Jul 18 2024
nonn,easy,nice,changed
editing
approved
a(n) = Sum_{k = floor(n/2)..n} binomial(n, k)^2*binomial(2*k, n). - Peter Bala, Jul 18 2024
approved
editing