[go: up one dir, main page]

login
A357084 revision #9

A357084
E.g.f. satisfies log(A(x)) = (exp(x*A(x)) - 1)^2 * A(x).
2
1, 0, 2, 6, 98, 990, 19082, 347046, 8512226, 220737390, 6776521082, 225532370646, 8413133799314, 339965749171230, 14995100013227882, 711308930246853126, 36278600375671552322, 1974411768891211652430, 114394542828023045764442
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n+k+1)^(k-1) * Stirling2(n,2*k)/k!.
PROG
(PARI) a(n) = sum(k=0, n\2, (2*k)!*(n+k+1)^(k-1)*stirling(n, 2*k, 2)/k!);
CROSSREFS
Cf. A357024.
Sequence in context: A081992 A066091 A100704 * A123257 A230927 A054247
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 11 2022
STATUS
approved