[go: up one dir, main page]

login
A357086
E.g.f. satisfies A(x) * log(A(x)) = (exp(x*A(x)) - 1)^2.
1
1, 0, 2, 6, 50, 510, 5882, 88326, 1502258, 29368590, 650366762, 15974149686, 433095937826, 12829712583870, 412295632858202, 14292175302568806, 531485147656990994, 21107739762958541550, 891673745283286886282, 39923664347178352362006
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n-k+1)^(k-1) * Stirling2(n,2*k)/k!.
PROG
(PARI) a(n) = sum(k=0, n\2, (2*k)!*(n-k+1)^(k-1)*stirling(n, 2*k, 2)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 11 2022
STATUS
approved