OFFSET
1,1
COMMENTS
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Vladimir Shevelev, A classification of the positive integers over primes
FORMULA
lpf(a(n)) = prime(pi(sqrt(a(n))-1), where pi(n) = A000720(n).
EXAMPLE
a(1)=10. Indeed, in interval [2,sqrt(10)] we have two primes: 2 and 3. Maximal from them 3, the second maximal is 2, and 2=lpf(10).
MATHEMATICA
Select[Range[4000], Prime[PrimePi[Sqrt[#]]-1] == FactorInteger[#][[1, 1]] &] (* Indranil Ghosh, Mar 08 2017 *)
PROG
(PARI) select(n->prime(primepi(sqrtint(n))-1)==factor(n)[1, 1], vector(10^4, x, x+8)) \\ Jens Kruse Andersen, Sep 17 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Sep 16 2014
EXTENSIONS
More terms from Peter J. C. Moses, Sep 16 2014
a(52..10000) from Jens Kruse Andersen, Sep 17 2014
STATUS
approved