[go: up one dir, main page]

login
A356660
Numbers k that can be written as the sum of 10 divisors of k (not necessarily distinct).
9
10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 98, 100, 102, 104, 108, 110, 112, 114, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 150, 152, 154, 156, 160, 162
OFFSET
1,1
COMMENTS
From David A. Corneth, Oct 08 2022: (Start)
All terms are even. Proof: suppose a term is odd. Then all divisors are odd. Adding 10 odd numbers gives an even number. A contradiction.
If k is a term then so is k*m for m >= 1. Proof: Multiply each divisor in this sum of 10 divisors that give k with m. Then each term is a divisor of k*m and their sum is k*m. (End)
LINKS
EXAMPLE
14 is in the sequence since 14 = 2+2+2+2+1+1+1+1+1+1, where each summand divides 14.
PROG
(Python)
from sympy import divisors
def t_sum_of_n_div(n, target):
out, p = [], divisors(n)[::-1][1:]
def dfs(t, divs, index_s, kk):
if len(out)!=0 or kk>target:return
if kk == target and t == 0:
out.append(divs)
return
for i in range(index_s, len(p)):
if t >= p[i]:
temp_divs = divs.copy()
temp_divs.append(p[i])
dfs(t-p[i], temp_divs, i, kk+1)
dfs(n, [], 0, 0)
return out
terms = [i for i in range(2, 200) if len(t_sum_of_n_div(i, 10))!=0]
print(terms) # Gleb Ivanov, Sep 02 2022
(PARI) upto(n) = { my(v = vector(n, i, -1), t = 0); forstep(i = 2, n, 2, if(v[i] == -1, v[i] = is(i); if(v[i] == 1, for(j = 2, n \ i, v[i*j] = 1; ) ) ); ); select(x->x >= 1, v, 1); }
is(n, {qd = 10}) = { my(d = divisors(n), res = 0); d = d[^#d]; forvec(x = vector(qd-1, i, [1, #d]), s = sum(i = 1, qd-1, d[x[i]]); if(n - s >= d[x[qd - 1]], if(n % (n - s) == 0, return(1); ) ) , 1 ); 0 } \\ David A. Corneth, Oct 08 2022
CROSSREFS
Numbers k that can be written as the sum of j divisors of k (not necessarily distinct) for j=1..10: A000027 (j=1), A299174 (j=2), A355200 (j=3), A354591 (j=4), A355641 (j=5), A356609 (j=6), A356635 (j=7), A356657 (j=8), A356659 (j=9), this sequence (j=10).
Sequence in context: A351998 A088381 A163750 * A167153 A298298 A247393
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 20 2022
STATUS
approved