[go: up one dir, main page]

login
A246277 revision #70

A246277
Column index of n in A246278: a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)).
87
0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 15, 1, 16, 7, 17, 3, 18, 1, 19, 11, 20, 1, 21, 1, 22, 6, 23, 1, 24, 2, 25, 13, 26, 1, 27, 5, 28, 17, 29, 1, 30, 1, 31, 10, 32, 7, 33, 1, 34, 19, 35, 1, 36, 1, 37, 9, 38, 3, 39, 1, 40, 8, 41, 1, 42
OFFSET
1,4
COMMENTS
If n >= 2, n occurs in column a(n) of A246278.
By convention, a(1) = 0 because 1 does not occur in A246278.
FORMULA
a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)) = a(A064216(n+1)). [Cf. the formula for A252463.]
Instead of the equation for a(2n+1) above, we may write a(A003961(n)) = a(n). - Peter Munn, May 21 2022
Other identities. For all n >= 1, the following holds:
For all w >= 0, a(p_{i} * p_{j} * ... * p_{k}) = a(p_{i+w} * p_{j+w} * ... * p_{k+w}).
For all n >= 2, A001222(a(n)) = A001222(n)-1. [a(n) has one less prime factor than n. Thus each semiprime (A001358) is mapped to some prime (A000040), etc.]
For all n >= 2, a(n) = A078898(A249817(n)).
For semiprimes n = p_i * p_j, j >= i, a(n) = A000040(1+A243055(n)) = p_{1+j-i}.
a(n) = floor(A348717(n)/2). - Antti Karttunen, Apr 30 2022
If n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=2..k} prime(x_k-x_1+1). The opposite version is A358195, prime indices A358172, even bisection A241916. - Gus Wiseman, Dec 29 2022
MATHEMATICA
a246277[n_Integer] := Module[{f, p, a064989, a},
f[x_] := Transpose@FactorInteger[x];
p[x_] := Which[
x == 1, 1,
x == 2, 1,
True, NextPrime[x, -1]];
a064989[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
a[1] = 0;
a[x_] := If[EvenQ[x], x/2, NestWhile[a064989, x, OddQ]/2];
a/@Range[n]]; a246277[84] (* Michael De Vlieger, Dec 19 2014 *)
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
(PARI) A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f)/2); \\ Antti Karttunen, Apr 30 2022
(Scheme) ;; two different variants, the second one employing memoizing definec-macro)
(define (A246277 n) (if (= 1 n) 0 (let loop ((n n)) (if (even? n) (/ n 2) (loop (A064989 n))))))
(definec (A246277 n) (cond ((= 1 n) 0) ((even? n) (/ n 2)) (else (A246277 (A064989 n)))))
(Python)
from sympy import factorint, prevprime
from operator import mul
from functools import reduce
def a064989(n):
f=factorint(n)
return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
def a(n): return 0 if n==1 else n//2 if n%2==0 else a(a064989(n))
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
CROSSREFS
Terms of A348717 halved. A305897 is the restricted growth sequence transform.
Positions of terms 1 .. 8 in this sequence are given by the following sequences: A000040, A001248, A006094, A030078, A090076, A251720, A090090, A030514.
Cf. A078898 (has the same role with array A083221 as this sequence has with A246278).
This sequence is also used in the definition of the following permutations: A246274, A246276, A246675, A246677, A246683, A249815, A249817 (A249818), A249823, A249825, A250244, A250245, A250247, A250249.
Also in the definition of arrays A249821, A251721, A251722.
The sum of prime indices of a(n) is A359358 + A001222 - 1, cf. A326844.
A112798 lists prime indices, length A001222, sum A056239.
Sequence in context: A325352 A305438 A078898 * A260739 A130747 A370822
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 21 2014
STATUS
editing