[go: up one dir, main page]

login
A231409 revision #6

A231409
Least k with 1^(k*m) + 2^(k*m) + ... + (k*m)^(k*m) == k (mod k*m) for m in A230311.
10
1, 1, 1, 1, 1, 5, 5, 39607528021345872635
OFFSET
1,6
COMMENTS
Least k with A031971(k*m) == k (mod k*m) for m in A230311.
See A031971 and A230311 for more comments and crossrefs.
LINKS
Jose MarĂ­a Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^m + 2^m + ... + m^m == n (mod m) with n|m, arXiv:1309.7941 [math.NT].
EXAMPLE
1^m + 2^m + ... + m^m == 1 (mod m) for the first 5 terms 1, 2, 6, 42, 1806 of A230311, so a(n) = 1 for n <= 5.
CROSSREFS
Sequence in context: A226260 A102060 A102058 * A031364 A078473 A215833
KEYWORD
nonn,more,hard
AUTHOR
Jonathan Sondow, Nov 30 2013
STATUS
editing