[go: up one dir, main page]

login
A191646 revision #70

A191646
Triangle read by rows: T(n,k) = number of connected multigraphs with n >= 0 edges and 1 <= k <= n+1 vertices, with no loops allowed.
27
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 11, 11, 6, 0, 1, 6, 22, 34, 29, 11, 0, 1, 7, 37, 85, 110, 70, 23, 0, 1, 9, 61, 193, 348, 339, 185, 47, 0, 1, 11, 95, 396, 969, 1318, 1067, 479, 106, 0, 1, 13, 141, 771, 2445, 4457, 4940, 3294, 1279, 235
OFFSET
0,9
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274 (terms 0..119 from R. J. Mathar)
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; see Section 4.
Brendan McKay and Adolfo Piperno, nauty and Traces. [nauty and Traces are programs for computing automorphism groups of graphs and digraphs.]
B. D. McKay and A. Piperno, Practical Graph Isomorphism, II, J. Symbolic Computation 60 (2013), 94-112.
Gordon Royle, Small Multigraphs.
FORMULA
T(n,k=3) = A253186(n) = A034253(n,k=2) for n >= 1. - Petros Hadjicostas, Oct 02 2019
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
1;
0, 1;
0, 1, 1;
0, 1, 2, 2;
0, 1, 3, 5, 3;
0, 1, 4, 11, 11, 6;
0, 1, 6, 22, 34, 29, 11;
...
PROG
(PARI)
EulerT(v)={my(p=exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1); Vec(p/x, -#v)}
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i], v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t-1)\2)*x^t + if(t%2, 0, x^(t/2)))}
G(n, m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p, x) + O(x*x^m), -m))); s/n!}
R(n)={Mat(apply(p->Col(p+O(y^n), -n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k, n-1), y)))))}
{ my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n, k], ", ")); print) } \\ Andrew Howroyd, May 14 2018
CROSSREFS
Row sums give A076864. Diagonal is A000055.
Cf. A034253, A054923, A192517, A253186 (column k=3), A290778 (column k=4).
Sequence in context: A296068 A144064 A172236 * A297321 A277938 A130020
KEYWORD
nonn,tabl
AUTHOR
Alberto Tacchella, Jul 04 2011
STATUS
approved