Displaying 1-10 of 26 results found.
Triangle read by rows: number of connected graphs with k >= 0 edges and n nodes (1<=n<=k+1).
+10
21
1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 3, 0, 0, 0, 1, 5, 6, 0, 0, 0, 1, 5, 13, 11, 0, 0, 0, 0, 4, 19, 33, 23, 0, 0, 0, 0, 2, 22, 67, 89, 47, 0, 0, 0, 0, 1, 20, 107, 236, 240, 106, 0, 0, 0, 0, 1, 14, 132, 486, 797, 657, 235, 0, 0, 0, 0, 0, 9, 138, 814, 2075, 2678, 1806, 551, 0, 0, 0, 0, 0, 5, 126, 1169, 4495, 8548, 8833, 5026, 1301
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 93, Table 4.2.2; p. 241, Table A2.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 0, 1, 2;
0, 0, 0, 2, 3;
0, 0, 0, 1, 5 6;
0, 0, 0, 1, 5, 13, 11;
0, 0, 0, 0, 4, 19, 33, 23;
0, 0, 0, 0, 2, 22, 67, 89, 47;
0, 0, 0, 0, 1, 20, 107, 236, 240, 106;
... (so with 5 edges there's 1 graph with 4 nodes, 5 with 5 nodes and 6 with 6 nodes). [Typo corrected by Anders Haglund, Jul 08 2008]
PROG
(PARI)
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n, 1..n]))} \\ Andrew Howroyd, Oct 23 2019
CROSSREFS
Subsequent diagonals give the number of connected unlabeled graphs with n nodes and n+k edges for k=0..2: A001429, A001435, A001436.
Number of connected unlabeled loopless multigraphs with 3 vertices and n edges.
+10
18
0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330
COMMENTS
a(n) is also the number of ways to partition n into 2 or 3 parts.
a(n) is also the dimension of linear space of three-dimensional 2n-homogeneous polynomial vector fields, which have an octahedral symmetry (for a given representation), which are solenoidal, and which are vector fields on spheres. - Giedrius Alkauskas, Sep 30 2017
a(n) is also the number of loopless connected n-regular multigraphs with 4 nodes. - Natan Arie Consigli, Aug 09 2019
a(n) is also the number of inequivalent linear [n, k=2] binary codes without 0 columns (see A034253 for more details). - Petros Hadjicostas, Oct 02 2019
LINKS
H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,2,2}.]
FORMULA
a(n) = floor(n/2) + floor((n^2 + 6)/12).
G.f.: x^2*(x^3 - x - 1)/((x - 1)^2*(x^2 - 1)*(x^2 + x + 1)).
EXAMPLE
On vertex set {a, b, c}, every connected multigraph with n = 5 edges is isomorphic to a multigraph with one of the following a(5) = 4 edge multisets: {ab, ab, ab, ab, ac}, {ab, ab, ab, ac, ac}, {ab, ab, ab, ac, bc}, and {ab, ab, ac, ac, bc}.
MATHEMATICA
CoefficientList[Series[- x^2 (x^3 - x - 1) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Mar 24 2015 *)
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 1, 2, 3, 4}, 61] (* Robert G. Wilson v, Oct 11 2017 *)
a[n_]:=Floor[n/2] + Floor[(n^2 + 6)/12]; Array[a, 70, 0] (* Stefano Spezia, Oct 09 2018 *)
PROG
(Sage) [floor(n/2) + floor((n^2 + 6)/12) for n in range(70)]
(Magma) [Floor(n/2) + Floor((n^2 + 6)/12): n in [0..70]]; // Vincenzo Librandi, Mar 24 2015
CROSSREFS
First differences of A034198 (excepting the first term).
Regular triangle read by rows where T(n,k) is the number of unlabeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
+10
17
1, 1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 0, 3, 6, 3, 0, 0, 2, 11, 14, 6, 0, 0, 1, 13, 35, 33, 11, 0, 0, 0, 10, 61, 112, 81, 23, 0, 0, 0, 5, 75, 262, 347, 204, 47, 0, 0, 0, 2, 68, 463, 1059, 1085, 526, 106, 0, 0, 0, 1, 49, 625, 2458, 4091, 3348, 1376, 235
EXAMPLE
Triangle begins:
1
1 1
0 1 1
0 1 3 2
0 0 3 6 3
0 0 2 11 14 6
0 0 1 13 35 33 11
Non-isomorphic representatives of the graphs counted in row 4:
{{2}{3}{12}{13}} {{4}{12}{23}{34}} {{13}{24}{35}{45}}
{{2}{3}{13}{23}} {{4}{13}{23}{34}} {{14}{25}{35}{45}}
{{3}{12}{13}{23}} {{4}{13}{24}{34}} {{15}{25}{35}{45}}
{{4}{14}{24}{34}}
{{12}{13}{24}{34}}
{{14}{23}{24}{34}}
PROG
(PARI)
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n, 1..n]))} \\ Andrew Howroyd, Oct 22 2019
Number of connected loopless multigraphs with n edges.
+10
16
1, 1, 2, 5, 12, 33, 103, 333, 1183, 4442, 17576, 72810, 314595, 1410139, 6541959, 31322474, 154468852, 783240943, 4077445511, 21765312779, 118999764062, 665739100725, 3807640240209, 22246105114743, 132672322938379, 807126762251748
COMMENTS
Inverse Euler transform of A050535.
MATHEMATICA
A050535 = Cases[Import["https://oeis.org/ A050535/b050535.txt", "Table"], {_, _}][[All, 2]];
(* EulerInvTransform is defined in A022562 *)
Join[{1}, EulerInvTransform[ A050535 // Rest]] (* Jean-François Alcover, Feb 11 2020, updated Mar 17 2020 *)
Number of connected graphs with n edges with loops allowed.
+10
15
1, 2, 2, 6, 12, 33, 93, 287, 940, 3309, 12183, 47133, 190061, 796405, 3456405, 15501183, 71681170, 341209173, 1669411182, 8384579797, 43180474608, 227797465130, 1229915324579, 6790642656907, 38311482445514, 220712337683628, 1297542216770482, 7779452884747298
COMMENTS
Inverse Euler transform of A053419.
The Multiset Transform gives the number of graphs with n edges (loops allowed) and k components (0<=k<=n):
1
0 2
0 2 3
0 6 4 4
0 12 15 6 5
0 33 36 24 8 6
0 93 111 64 33 10 7
0 287 324 207 92 42 12 8
0 940 1036 633 308 120 51 14 9
0 3309 3408 2084 966 409 148 60 16 10
0 12183 11897 6959 3243 1305 510 176 69 18 11
0 47133 43137 24415 10970 4432 1644 611 204 78 20 12
0 190061 163608 88402 38763 15125 5628 1983 712 232 87 22 13
0 796405 644905 332979 140671 53732 19316 6824 2322 813 260 96 24 14
0 3456405 2639871 1299054 529179 195517 68878 23515 8020 2661 914 288 105 26 15 (End)
EXAMPLE
a(1)=2: Either one node with the edge equal to a loop, or two nodes connected by the edge. a(2)=2: Either three nodes on a chain connected by the two edges, or two nodes connected by an edge, one node with a loop. Apparently multi-loops are not allowed (?). - R. J. Mathar, Jul 25 2017
PROG
(PARI) \\ See A322114 for InvEulerMT, G.
seq(n)={vecsum([Vec(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])} \\ Andrew Howroyd, Oct 22 2019
CROSSREFS
Cf. A000664, A002905, A007718, A050535, A053419, A054923, A191646, A191970, A275421, A322133, A322151, A322152.
Table read by antidiagonals: T(n,k) = number of multigraphs with n vertices and k edges, with no loops allowed (n >= 1, k >= 0).
+10
14
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 3, 6, 4, 1, 0, 1, 1, 3, 7, 11, 5, 1, 0, 1, 1, 3, 8, 17, 18, 7, 1, 0, 1, 1, 3, 8, 21, 35, 32, 8, 1, 0, 1, 1, 3, 8, 22, 52, 76, 48, 10, 1, 0, 1, 1, 3, 8, 23, 60, 132, 149, 75, 12, 1, 0
COMMENTS
Rows converge to sequence A050535, i.e. T(n,k) = A050535(k) for n >= 2k.
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.
EXAMPLE
Table begins:
[1,0,0,0,0,0,0,0,0,...],
[1,1,1,1,1,1,1,1,1,...],
[1,1,2,3,4,5,7,8,10,...],
[1,1,3,6,11,18,32,48,75,...],
[1,1,3,7,17,35,76,149,291,...],
[1,1,3,8,21,52,132,313,741,...],
[1,1,3,8,22,60,173,471,1303,...],
[1,1,3,8,23,64,197,588,1806,...],
...
PROG
(PARI) \\ See A191646 for G function.
R(n)={Mat(vectorv(n, k, concat([1], G(k, n-1))))}
{ my(A=R(10)); for(n=1, #A, for(k=1, #A, print1(A[n, k], ", ")); print) } \\ Andrew Howroyd, May 14 2018
Number of multigraphs with 5 nodes and n edges.
+10
12
1, 1, 3, 7, 17, 35, 76, 149, 291, 539, 974, 1691, 2874, 4730, 7620, 11986, 18485, 27944, 41550, 60744, 87527, 124338, 174403, 241650, 331153, 448987, 602853, 801943, 1057615, 1383343, 1795578, 2313595, 2960656, 3763879, 4755505, 5972927, 7460196, 9267980
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 650.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
FORMULA
G.f.: (x^21 + x^20 + 5*x^19 + 8*x^18 + 14*x^17 + 22*x^16 + 32*x^15 + 40*x^14 + 39*x^13 + 47*x^12 + 36*x^11 + 36*x^10 + 25*x^9 + 21*x^8 + 12*x^7 + 11*x^6 + 4*x^5 + 4*x^4 + x^3 + x^2 - x + 1)/((x^6 - 1)*(x^5 - 1)^2*(x^4 - 1)^2*(x^3 - 1)^2*(x - 1)^3*(x + 1)).
MATHEMATICA
CoefficientList[Series[PairGroupIndex[SymmetricGroup[5], s]/.Table[s[i]->1/(1-x^i), {i, 1, Binomial[5, 2]}], {x, 0, 30}], x] (* Geoffrey Critzer, Oct 14 2012 *)
Triangle read by rows where T(n,k) is the number of unlabeled connected multigraphs with loops with n edges and k vertices.
+10
12
1, 1, 1, 1, 2, 1, 1, 4, 4, 2, 1, 6, 11, 9, 3, 1, 9, 25, 34, 20, 6, 1, 12, 52, 104, 99, 49, 11, 1, 16, 94, 274, 387, 298, 118, 23, 1, 20, 162, 645, 1295, 1428, 881, 300, 47, 1, 25, 263, 1399, 3809, 5803, 5088, 2643, 765, 106, 1, 30, 407, 2823, 10187, 20645, 24606, 17872, 7878, 1998, 235
EXAMPLE
Triangle begins:
1
1 1
1 2 1
1 4 4 2
1 6 11 9 3
1 9 25 34 20 6
1 12 52 104 99 49 11
PROG
(PARI)
EulerT(v)={my(p=exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1); Vec(p/x, -#v)}
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i], v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t+1)\2)*x^t + if(t%2, 0, x^(t/2)))}
G(n, m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p, x) + O(x*x^m), -m))); s/n!}
R(n)={Mat(apply(p->Col(p+O(y^n), -n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k, n-1), y)))))}
{ my(T=R(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Nov 30 2018
Number of loopless multigraphs with 6 nodes and n edges.
+10
9
1, 1, 3, 8, 21, 52, 132, 313, 741, 1684, 3711, 7895, 16310, 32604, 63363, 119745, 220546, 396428, 696750, 1198812, 2022503, 3349574, 5452496, 8732932, 13776366, 21423968, 32872642, 49804323, 74560913, 110369469, 161639227
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 650.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
MATHEMATICA
CoefficientList[Series[PairGroupIndex[SymmetricGroup[6], s]/.Table[s[i]->1/(1-x^i), {i, 1, Binomial[6, 2]}], {x, 0, 30}], x] (* Geoffrey Critzer, Oct 14 2012 *)
Number of labeled connected graphs with n edges (the vertices are {1,2,...,k} for some k).
+10
8
1, 1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525780, 3384988809, 91976158434, 2751122721402, 89833276321440, 3179852538140115, 121287919647418118, 4959343701136929850, 216406753768138678671, 10037782414506891597734, 493175891246093032826160
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n+1], {2}], {n}], And[Union@@#==Range[Max@@Union@@#], Length[csm[#]]==1]&]], {n, 6}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j, 2)))))} \\ Andrew Howroyd, Nov 28 2018
CROSSREFS
Cf. A000664, A002905, A007718, A013922, A054923, A057500, A191646, A275421, A291842 (planar case), A322114, A322115.
Search completed in 0.019 seconds
|