[go: up one dir, main page]

login
Search: a191646 -id:a191646
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: number of connected graphs with k >= 0 edges and n nodes (1<=n<=k+1).
+10
21
1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 3, 0, 0, 0, 1, 5, 6, 0, 0, 0, 1, 5, 13, 11, 0, 0, 0, 0, 4, 19, 33, 23, 0, 0, 0, 0, 2, 22, 67, 89, 47, 0, 0, 0, 0, 1, 20, 107, 236, 240, 106, 0, 0, 0, 0, 1, 14, 132, 486, 797, 657, 235, 0, 0, 0, 0, 0, 9, 138, 814, 2075, 2678, 1806, 551, 0, 0, 0, 0, 0, 5, 126, 1169, 4495, 8548, 8833, 5026, 1301
OFFSET
0,10
COMMENTS
The diagonal n = k+1 is A000055(n). - Jonathan Vos Post, Aug 10 2008
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 93, Table 4.2.2; p. 241, Table A2.
LINKS
G. A. Baker et al., High-temperature expansions for the spin-1/2 Heisenberg model, Phys. Rev., 164 (1967), 800-817.
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017), Table 57.
Gordon Royle, Small graphs
EXAMPLE
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 0, 1, 2;
0, 0, 0, 2, 3;
0, 0, 0, 1, 5 6;
0, 0, 0, 1, 5, 13, 11;
0, 0, 0, 0, 4, 19, 33, 23;
0, 0, 0, 0, 2, 22, 67, 89, 47;
0, 0, 0, 0, 1, 20, 107, 236, 240, 106;
... (so with 5 edges there's 1 graph with 4 nodes, 5 with 5 nodes and 6 with 6 nodes). [Typo corrected by Anders Haglund, Jul 08 2008]
PROG
(PARI)
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n, 1..n]))} \\ Andrew Howroyd, Oct 23 2019
CROSSREFS
Main diagonal is A000055.
Subsequent diagonals give the number of connected unlabeled graphs with n nodes and n+k edges for k=0..2: A001429, A001435, A001436.
Cf. A002905 (row sums), A001349 (column sums), A008406, A046751 (transpose), A054924 (transpose), A046742 (w/o left column), A343088 (labeled).
KEYWORD
nonn,easy,nice,tabl
EXTENSIONS
a(83)-a(89) corrected by Andrew Howroyd, Oct 24 2019
STATUS
approved
Number of connected unlabeled loopless multigraphs with 3 vertices and n edges.
+10
18
0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330
OFFSET
0,4
COMMENTS
a(n) is also the number of ways to partition n into 2 or 3 parts.
a(n) is also the dimension of linear space of three-dimensional 2n-homogeneous polynomial vector fields, which have an octahedral symmetry (for a given representation), which are solenoidal, and which are vector fields on spheres. - Giedrius Alkauskas, Sep 30 2017
Apparently a(n) = A244239(n-6) for n > 4. - Georg Fischer, Oct 09 2018
a(n) is also the number of loopless connected n-regular multigraphs with 4 nodes. - Natan Arie Consigli, Aug 09 2019
a(n) is also the number of inequivalent linear [n, k=2] binary codes without 0 columns (see A034253 for more details). - Petros Hadjicostas, Oct 02 2019
Differs from A160138 only by the offset. - R. J. Mathar, May 15 2023
LINKS
Giedrius Alkauskas, Projective and polynomial superflows. I, arxiv.org/1601.06570 [math.AG], 2017; see Section 5.3.
Harald Fripertinger, Isometry Classes of Codes.
H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,2,2}.]
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; see Eq. (23).
Gordon Royle, Small Multigraphs.
FORMULA
a(n) = A004526(n) + A069905(n).
a(n) = floor(n/2) + floor((n^2 + 6)/12).
G.f.: x^2*(x^3 - x - 1)/((x - 1)^2*(x^2 - 1)*(x^2 + x + 1)).
EXAMPLE
On vertex set {a, b, c}, every connected multigraph with n = 5 edges is isomorphic to a multigraph with one of the following a(5) = 4 edge multisets: {ab, ab, ab, ab, ac}, {ab, ab, ab, ac, ac}, {ab, ab, ab, ac, bc}, and {ab, ab, ac, ac, bc}.
MATHEMATICA
CoefficientList[Series[- x^2 (x^3 - x - 1) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Mar 24 2015 *)
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 1, 2, 3, 4}, 61] (* Robert G. Wilson v, Oct 11 2017 *)
a[n_]:=Floor[n/2] + Floor[(n^2 + 6)/12]; Array[a, 70, 0] (* Stefano Spezia, Oct 09 2018 *)
PROG
(Sage) [floor(n/2) + floor((n^2 + 6)/12) for n in range(70)]
(Magma) [Floor(n/2) + Floor((n^2 + 6)/12): n in [0..70]]; // Vincenzo Librandi, Mar 24 2015
CROSSREFS
Column k = 3 of A191646 and column k = 2 of A034253.
First differences of A034198 (excepting the first term).
KEYWORD
nonn,easy
AUTHOR
Danny Rorabaugh, Mar 23 2015
STATUS
approved
Regular triangle read by rows where T(n,k) is the number of unlabeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
+10
17
1, 1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 0, 3, 6, 3, 0, 0, 2, 11, 14, 6, 0, 0, 1, 13, 35, 33, 11, 0, 0, 0, 10, 61, 112, 81, 23, 0, 0, 0, 5, 75, 262, 347, 204, 47, 0, 0, 0, 2, 68, 463, 1059, 1085, 526, 106, 0, 0, 0, 1, 49, 625, 2458, 4091, 3348, 1376, 235
OFFSET
0,9
LINKS
EXAMPLE
Triangle begins:
1
1 1
0 1 1
0 1 3 2
0 0 3 6 3
0 0 2 11 14 6
0 0 1 13 35 33 11
Non-isomorphic representatives of the graphs counted in row 4:
{{2}{3}{12}{13}} {{4}{12}{23}{34}} {{13}{24}{35}{45}}
{{2}{3}{13}{23}} {{4}{13}{23}{34}} {{14}{25}{35}{45}}
{{3}{12}{13}{23}} {{4}{13}{24}{34}} {{15}{25}{35}{45}}
{{4}{14}{24}{34}}
{{12}{13}{24}{34}}
{{14}{23}{24}{34}}
PROG
(PARI)
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n, 1..n]))} \\ Andrew Howroyd, Oct 22 2019
CROSSREFS
Row sums are A191970. Last column is A000055.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 26 2018
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Oct 22 2019
STATUS
approved
Number of connected loopless multigraphs with n edges.
+10
16
1, 1, 2, 5, 12, 33, 103, 333, 1183, 4442, 17576, 72810, 314595, 1410139, 6541959, 31322474, 154468852, 783240943, 4077445511, 21765312779, 118999764062, 665739100725, 3807640240209, 22246105114743, 132672322938379, 807126762251748
OFFSET
0,3
COMMENTS
Inverse Euler transform of A050535.
LINKS
Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler, Energy flow polynomials: A complete linear basis for jet substructure, arXiv:1712.07124 [hep-ph], 2017.
Tsuyoshi Miezaki, Akihiro Munemasa, Yusaku Nishimura, Tadashi Sakuma, and Shuhei Tsujie, Universal graph series, chromatic functions, and their index theory, arXiv:2403.09985 [math.CO], 2024. See p. 23.
N. J. A. Sloane, Transforms
MATHEMATICA
A050535 = Cases[Import["https://oeis.org/A050535/b050535.txt", "Table"], {_, _}][[All, 2]];
(* EulerInvTransform is defined in A022562 *)
Join[{1}, EulerInvTransform[A050535 // Rest]] (* Jean-François Alcover, Feb 11 2020, updated Mar 17 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 23 2002
EXTENSIONS
More terms from Sean A. Irvine, Oct 02 2011
Name and comment swapped by Gus Wiseman, Nov 28 2018
a(0)=1 prepended by Andrew Howroyd, Oct 23 2019
STATUS
approved
Number of connected graphs with n edges with loops allowed.
+10
15
1, 2, 2, 6, 12, 33, 93, 287, 940, 3309, 12183, 47133, 190061, 796405, 3456405, 15501183, 71681170, 341209173, 1669411182, 8384579797, 43180474608, 227797465130, 1229915324579, 6790642656907, 38311482445514, 220712337683628, 1297542216770482, 7779452884747298
OFFSET
0,2
COMMENTS
Inverse Euler transform of A053419.
From R. J. Mathar, Jul 25 2017: (Start)
The Multiset Transform gives the number of graphs with n edges (loops allowed) and k components (0<=k<=n):
1
0 2
0 2 3
0 6 4 4
0 12 15 6 5
0 33 36 24 8 6
0 93 111 64 33 10 7
0 287 324 207 92 42 12 8
0 940 1036 633 308 120 51 14 9
0 3309 3408 2084 966 409 148 60 16 10
0 12183 11897 6959 3243 1305 510 176 69 18 11
0 47133 43137 24415 10970 4432 1644 611 204 78 20 12
0 190061 163608 88402 38763 15125 5628 1983 712 232 87 22 13
0 796405 644905 332979 140671 53732 19316 6824 2322 813 260 96 24 14
0 3456405 2639871 1299054 529179 195517 68878 23515 8020 2661 914 288 105 26 15 (End)
EXAMPLE
a(1)=2: Either one node with the edge equal to a loop, or two nodes connected by the edge. a(2)=2: Either three nodes on a chain connected by the two edges, or two nodes connected by an edge, one node with a loop. Apparently multi-loops are not allowed (?). - R. J. Mathar, Jul 25 2017
PROG
(PARI) \\ See A322114 for InvEulerMT, G.
seq(n)={vecsum([Vec(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])} \\ Andrew Howroyd, Oct 22 2019
KEYWORD
nonn
AUTHOR
Alberto Tacchella, Jun 20 2011
EXTENSIONS
Terms a(25) and beyond from Andrew Howroyd, Oct 22 2019
STATUS
approved
Table read by antidiagonals: T(n,k) = number of multigraphs with n vertices and k edges, with no loops allowed (n >= 1, k >= 0).
+10
14
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 3, 6, 4, 1, 0, 1, 1, 3, 7, 11, 5, 1, 0, 1, 1, 3, 8, 17, 18, 7, 1, 0, 1, 1, 3, 8, 21, 35, 32, 8, 1, 0, 1, 1, 3, 8, 22, 52, 76, 48, 10, 1, 0, 1, 1, 3, 8, 23, 60, 132, 149, 75, 12, 1, 0
OFFSET
1,13
COMMENTS
Rows converge to sequence A050535, i.e. T(n,k) = A050535(k) for n >= 2k.
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (terms 1..78 from Alberto Tacchella computed using nauty 2.4, terms 79..595 from Sean A. Irvine computed using cycle index method of Harary and Palmer).
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017), Table 69.
EXAMPLE
Table begins:
[1,0,0,0,0,0,0,0,0,...],
[1,1,1,1,1,1,1,1,1,...],
[1,1,2,3,4,5,7,8,10,...],
[1,1,3,6,11,18,32,48,75,...],
[1,1,3,7,17,35,76,149,291,...],
[1,1,3,8,21,52,132,313,741,...],
[1,1,3,8,22,60,173,471,1303,...],
[1,1,3,8,23,64,197,588,1806,...],
...
PROG
(PARI) \\ See A191646 for G function.
R(n)={Mat(vectorv(n, k, concat([1], G(k, n-1))))}
{ my(A=R(10)); for(n=1, #A, for(k=1, #A, print1(A[n, k], ", ")); print) } \\ Andrew Howroyd, May 14 2018
CROSSREFS
Cf. A008406, A191646, A003082 (row 4), A014395 (row 5), A014396 (row 6).
KEYWORD
nonn,tabl
AUTHOR
Alberto Tacchella, Jul 03 2011
STATUS
approved
Number of multigraphs with 5 nodes and n edges.
+10
12
1, 1, 3, 7, 17, 35, 76, 149, 291, 539, 974, 1691, 2874, 4730, 7620, 11986, 18485, 27944, 41550, 60744, 87527, 124338, 174403, 241650, 331153, 448987, 602853, 801943, 1057615, 1383343, 1795578, 2313595, 2960656, 3763879, 4755505, 5972927, 7460196, 9267980
OFFSET
0,3
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 650.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
LINKS
FORMULA
G.f.: (x^21 + x^20 + 5*x^19 + 8*x^18 + 14*x^17 + 22*x^16 + 32*x^15 + 40*x^14 + 39*x^13 + 47*x^12 + 36*x^11 + 36*x^10 + 25*x^9 + 21*x^8 + 12*x^7 + 11*x^6 + 4*x^5 + 4*x^4 + x^3 + x^2 - x + 1)/((x^6 - 1)*(x^5 - 1)^2*(x^4 - 1)^2*(x^3 - 1)^2*(x - 1)^3*(x + 1)).
MATHEMATICA
CoefficientList[Series[PairGroupIndex[SymmetricGroup[5], s]/.Table[s[i]->1/(1-x^i), {i, 1, Binomial[5, 2]}], {x, 0, 30}], x] (* Geoffrey Critzer, Oct 14 2012 *)
PROG
(PARI) concat([1], G(5, 40)) \\ See A191646 for G. - Andrew Howroyd, Mar 15 2020
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
More terms from Vladeta Jovovic, Dec 23 1999
STATUS
approved
Triangle read by rows where T(n,k) is the number of unlabeled connected multigraphs with loops with n edges and k vertices.
+10
12
1, 1, 1, 1, 2, 1, 1, 4, 4, 2, 1, 6, 11, 9, 3, 1, 9, 25, 34, 20, 6, 1, 12, 52, 104, 99, 49, 11, 1, 16, 94, 274, 387, 298, 118, 23, 1, 20, 162, 645, 1295, 1428, 881, 300, 47, 1, 25, 263, 1399, 3809, 5803, 5088, 2643, 765, 106, 1, 30, 407, 2823, 10187, 20645, 24606, 17872, 7878, 1998, 235
OFFSET
0,5
LINKS
EXAMPLE
Triangle begins:
1
1 1
1 2 1
1 4 4 2
1 6 11 9 3
1 9 25 34 20 6
1 12 52 104 99 49 11
PROG
(PARI)
EulerT(v)={my(p=exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1); Vec(p/x, -#v)}
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i], v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t+1)\2)*x^t + if(t%2, 0, x^(t/2)))}
G(n, m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p, x) + O(x*x^m), -m))); s/n!}
R(n)={Mat(apply(p->Col(p+O(y^n), -n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k, n-1), y)))))}
{ my(T=R(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Nov 30 2018
CROSSREFS
Row sums are A007719. Diagonal k = n-1 is A000055.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 26 2018
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Nov 30 2018
STATUS
approved
Number of loopless multigraphs with 6 nodes and n edges.
+10
9
1, 1, 3, 8, 21, 52, 132, 313, 741, 1684, 3711, 7895, 16310, 32604, 63363, 119745, 220546, 396428, 696750, 1198812, 2022503, 3349574, 5452496, 8732932, 13776366, 21423968, 32872642, 49804323, 74560913, 110369469, 161639227
OFFSET
0,3
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 650.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
LINKS
MATHEMATICA
CoefficientList[Series[PairGroupIndex[SymmetricGroup[6], s]/.Table[s[i]->1/(1-x^i), {i, 1, Binomial[6, 2]}], {x, 0, 30}], x] (* Geoffrey Critzer, Oct 14 2012 *)
PROG
(PARI) concat([1], G(6, 40)) \\ See A191646 for G. - Andrew Howroyd, Mar 15 2020
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms and better description from Vladeta Jovovic, Dec 29 1999
STATUS
approved
Number of labeled connected graphs with n edges (the vertices are {1,2,...,k} for some k).
+10
8
1, 1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525780, 3384988809, 91976158434, 2751122721402, 89833276321440, 3179852538140115, 121287919647418118, 4959343701136929850, 216406753768138678671, 10037782414506891597734, 493175891246093032826160
OFFSET
0,3
LINKS
P. S. Kolesnikov and B. K. Sartayev, On the special identities of Gelfand--Dorfman algebras, arXiv:2105.13815 [math.RA], 2021.
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n+1], {2}], {n}], And[Union@@#==Range[Max@@Union@@#], Length[csm[#]]==1]&]], {n, 6}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j, 2)))))} \\ Andrew Howroyd, Nov 28 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 27 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Nov 28 2018
STATUS
approved

Search completed in 0.019 seconds