[go: up one dir, main page]

login
A167119 revision #7

A167119
Primes congruent to 2, 3, 5, 7 or 11 (mod 13).
5
2, 3, 5, 7, 11, 29, 31, 37, 41, 59, 67, 83, 89, 107, 109, 137, 163, 167, 193, 197, 211, 223, 239, 241, 263, 271, 293, 317, 349, 353, 367, 379, 397, 401, 419, 421, 431, 449, 457, 479, 499, 509, 523, 557, 577, 587, 601, 613, 631, 653, 661, 683, 691, 709, 733, 739, 743, 757
OFFSET
1,1
COMMENTS
Primes which have a remainder mod 13 that is prime.
LINKS
FORMULA
Union of A141858, A100202, A102732, A140371 and A140373. [R. J. Mathar, Oct 29 2009]
EXAMPLE
11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.
MATHEMATICA
f[n_]:=PrimeQ[Mod[n, 13]]; lst={}; Do[p=Prime[n]; If[f[p], AppendTo[lst, p]], {n, 6, 6!}]; lst
Select[Prime[Range[4000]], MemberQ[{2, 3, 5, 7, 11}, Mod[#, 13]]&] (* Vincenzo Librandi, Aug 05 2012 *)
PROG
(PARI) {forprime(p=2, 740, if(isprime(p%13), print1(p, ", ")))} [From Klaus Brockhaus, Oct 28 2009]
(MAGMA) [ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; [From Klaus Brockhaus, Oct 28 2009]
CROSSREFS
Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135: primes p such that p mod k is prime, for k = 3..12 resp.
Sequence in context: A373044 A036342 A114421 * A165682 A296924 A343423
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009 and Oct 29 2009
STATUS
proposed