# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a167119 Showing 1-1 of 1 %I A167119 #14 Sep 08 2022 08:45:48 %S A167119 2,3,5,7,11,29,31,37,41,59,67,83,89,107,109,137,163,167,193,197,211, %T A167119 223,239,241,263,271,293,317,349,353,367,379,397,401,419,421,431,449, %U A167119 457,479,499,509,523,557,577,587,601,613,631,653,661,683,691,709,733,739,743,757 %N A167119 Primes congruent to 2, 3, 5, 7 or 11 (mod 13). %C A167119 Primes which have a remainder mod 13 that is prime. %C A167119 Union of A141858, A100202, A102732, A140371 and A140373. - _R. J. Mathar_, Oct 29 2009 %H A167119 Vincenzo Librandi, Table of n, a(n) for n = 1..1000 %e A167119 11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence. %t A167119 f[n_]:=PrimeQ[Mod[n,13]]; lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,6,6!}];lst %t A167119 Select[Prime[Range[4000]],MemberQ[{2, 3, 5, 7, 11},Mod[#,13]]&] (* _Vincenzo Librandi_, Aug 05 2012 *) %o A167119 (PARI) {forprime(p=2, 740, if(isprime(p%13), print1(p, ",")))} \\ _Klaus Brockhaus_, Oct 28 2009 %o A167119 (Magma) [ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // _Klaus Brockhaus_, Oct 28 2009 %Y A167119 Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135: primes p such that p mod k is prime, for k = 3..12 resp. %K A167119 nonn,easy %O A167119 1,1 %A A167119 _Vladimir Joseph Stephan Orlovsky_, Oct 27 2009 %E A167119 Edited by _Klaus Brockhaus_ and _R. J. Mathar_, Oct 28 2009 and Oct 29 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE