[go: up one dir, main page]

login

Internal Format Used In

The On-Line Encyclopedia of Integer Sequences

This file describes the internal format used in The On-Line Encyclopedia of Integer Sequences

[For a description of the standard (or beautified) format used in the web pages, click here.]

Each sequence is described by about 10 lines, each line beginning

%x Aabcdef
where x is a letter (I, S, T, N, etc.) and abcdef is the 6-digit identification number (or catalogue number) of the sequence. Each sequence gets a unique A-number.

Here are two artificial examples, to illustrate the format used in the table (the abbreviations are explained below):

A simple example:

%I A007299
%S A007299 1,1,1,5,3,60,487
%N A007299 Hadamard matrices of order 4n.
%D A007299 M. Jones, The Catalan numbers, Amer. Math. Monthly, Vol. 256 (1939), pp. 1444-1578.
%K A007299 nonn,easy,more
%F A007299 a(n) = n^4 + 3*n.
%O A007299 1,4
%A A007299 Jane Smith (jsmith(AT)math.www.edu)

A more complicated example:

%I A000112 M1495 N0588
%S A000112 1,1,2,5,16,63,318,2045,16999,183231,2567284,46749427,1104891746,
%T A000112 33823827452
%N A000112 Partially ordered sets ("posets") with n elements.
%C A000112 A comment explaining the definition would go here.
%D A000112 A. Jones, Title of paper, Amer. Math. Monthly, vol. 21, pp. 100-120, 1991.
%D A000112 A. Jones, Further results on Euler's problem, preprint, 2002.
%H A000112 P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H A000112 David Rusin, Finite Topologies
%H A000112 E. W. Weisstein, Harshad Numbers
%O A000112 0,3
%F A000112 a(n) = n^4 + 3*n.
%K A000112 nonn,hard,core
%p A000112 (n^2+n+3)*(n+29);
%Y A000112 Cf. A000798 (labeled topologies).
%Y A000112 Sequence in context: A022494 A079566 A059685 this_sequence A003149 A027046 A000522
%Y A000112 Adjacent sequences: A000109 A000110 A000111 this_sequence A000113 A000114 A000115
%A A000112 N. J. A. Sloane

Further Examples and Style Guide:

Use "Back" to return to this page.

For even more examples,

enter an arbitrary A-number (e.g. A005132) here and click "Submit":
Use "Back" to return to this page.

Abbreviations Used

There is a summary at the end of this file.

%I = Identification line:       Required!

%I A012345

%S, %T and %U lines


%S A000108 1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,
%T A000108 2674440,9694845,35357670,129644790,477638700,1767263190,
%U A000108 6564120420,24466267020,91482563640,343059613650,1289904147324

%N = Name of sequence:       Required!


%N A000108 Catalan numbers: a(n) = C(2n,n)/(n+1) = (2n)!/(n!(n+1)!).

%N A000594 Ramanujan's tau function (or tau numbers).
%N A010085 Weight distribution of Hamming code of length 15 and minimal distance 3.

%D = Detailed references.


%D A010109 I. G. Enting, A, J. Guttmann and I. Jensen, Low-Temperature Series Expansions
   for the Spin-1 Ising Model, J. Phys. A. 27 (1994) 6987-7006.

%D A000925 A. Das and A. C. Melissinos, Quantum Mechanics: A Modern Introduction, Gordon
   and Breach, 1986, p. 47.

%D A022818 W. C. Yang (wcyang(AT)cco.caltech.edu), Derivatives of self-compositions of
   functions, preprint, 2002.

%H = Links related to this sequence


%H A036432 S. Colton, <a href="JIS/index.html#P99.1.2">
   Refactorable Numbers - A Machine Invention,</a> J. Integer Sequences, Vol. 2, 1999, #2.

%H A001371 F. Ruskey, <a href=http://www.theory.cs.uvic.ca/~cos/inf/neck/NecklaceInfo.html">Counting Necklaces</a>

%H A027414 N. J. A. Sloane, <a href="transforms.html">Transforms</a>
(Except that you should use "pointed brackets" where I had to use "ampersand less-than semicolon"; and you should put the information on one long line, whereas I broke the lines to make them fit better on the screen).

In other words, please use this format:

%H A012345 Author, <a href="http://www.etc.etc/file">Title</a>

%F = Formula (if not included in %N line)


%F A008346 G.f.: 1/(1-2*x^2-x^3).

%F A014551 a(n+1) = 2 * a(n) - (-1)^n * 3.
%N A030033 a(n+1)= Sum a(k)a(n-k), k = 0 ... [2n/3].

%Y = Cross-references to other sequences


%Y A003485 Cf. A003484.

%Y A007295 Cf. A006546, A007104, A007203.
%Y A005282 a(n) = A025583(n)^2+1.

%Y A000112 Sequence in context: A022494 A079566 A059685 this_sequence A003149
                 A027046 A000522

%Y A000112 Adjacent sequences: A000109 A000110 A000111 this_sequence A000113 
              A000114 A000115

%A = Author, submitter or other Authority:       Required!


%A A023600 Clark Kimberling (ck6(AT)evansville.edu)

%O = Offset a, b :     Required!

%S A000045 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,
and the 4th term is the first that is greater than 1, so here a = 0 and b = 4, and the %O line is:

%O A000045 0,4

%S A010051 0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0
%N A010051 Characteristic function of primes: 1 if n is prime else 0.
no term exceeds 1, so b takes its default value of 1. n starts at 0, so a = 0, and the %O line is:

%O A010051 0,1

%p, %t, %o = Computer program to produce the sequence


%p A010051 f:=i->if isprime(i) then 1 else 0; fi; [seq(f(i),i=0..100)];

%p A008334 for i from 1 to 100 do if isprime(i) then print(nops(factorset(i-1))); fi; od;
%t A011773 Table[If[n==1,1,LCM@@Map[ (#1[1]]-1)*#1[1]]^(#1[2]]-1)&, FactorInteger[n]]],{n,1,70}]
%o A002837 (PARI) v=[];for(n=0,60,if(isprime(n^2+n+41),v=concat(v,n),));v
%o A006006 (MAGMA) R := ReedMullerCode(2,7); print(WeightEnumerator(R));

%E = Extensions and Errors


%E A007097 15th term corrected by loria.fr!Paul.Zimmermann (Paul Zimmermann).

%E A010334 There is a typo at the n=6 term in the printed version of the paper.

%e = examples


%e A002654 4=2^2, so a(4)=1; 5=1^2+2^2=2^2+1^2, so a(5)=2.

%e A027824 1+3600*q^3+101250*q^4+...
%e A007318 {1}; {1,1}; {1,2,1}; {1,3,3,1}; {1,4,6,4,1}; ...

%K = Keywords:       Required!


%K A029403 nonn

%K A002654 core,easy,nonn
%K A024022 sign

%C = Comments


%C A002324 The hexagonal lattice is the familiar 2-dim. lattice in which each
point has 6 neighbors. This is sometimes called the triangular lattice.

%C A039997 a(n) counts substrings of digits of n which denote primes.
%C A046810 An anagram of a k-digit number is one of the k! permutations of the digits that does not begin with 0.

SUMMARY: all the possible lines:

%I A000001 Identification line (required)
%S A000001 First line of sequence (required)
%T A000001 2nd line of sequence.
%U A000001 3rd line of sequence.
%N A000001 Name (required)
%D A000001 Detailed reference line.
%D A000001 Detailed references (2).
%H A000001 Link to other site.
%H A000001 Link to other site (2).
%F A000001 Formula.
%F A000001 Formula (2).
%Y A000001 Cross-references to other sequences.
%A A000001 Author (required)
%O A000001 Offset (required)
%E A000001 Extensions, errors, etc.
%e A000001 examples to illustrate initial terms.
%p A000001 Maple program.
%t A000001 Mathematica program.
%o A000001 Program in another language.
%K A000001 Keywords (required)
%C A000001 Comments.