[go: up one dir, main page]

login
A379893
Triangle read by rows: T(n,k) is the number of standard Young tableaux with shapes in {lambda = (lambda_1,lambda_2,...) | lambda_1-lambda_2=k, lambda_i<=1 for i>=3, |lambda| = n}, n >= 0 and 0 <= k <= n.
1
1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 3, 3, 3, 0, 1, 6, 9, 6, 4, 0, 1, 15, 21, 19, 10, 5, 0, 1, 36, 55, 50, 34, 15, 6, 0, 1, 91, 141, 139, 99, 55, 21, 7, 0, 1, 232, 371, 379, 293, 175, 83, 28, 8, 0, 1, 603, 982, 1043, 847, 551, 286, 119, 36, 9, 0, 1, 1585, 2628, 2872, 2441, 1684, 956, 441, 164, 45, 10, 0, 1
OFFSET
0,8
LINKS
Xiaomei Chen, Counting humps and peaks in Motzkin paths with height k, arXiv:2412.00668 [math.CO], Dec 2024.
FORMULA
T(n,k) = (-1)^(n+k) + Sum_{i=0..(n-k-1)/2} Sum_{j=0..n-k-1-2*i, j==n+k-1 (mod 2)} (2*k+2) / (n+k+1-2*i-j) * binomial(n-2*i-2,j) * binomial(n-2*i-j-1,(n+k-j-1)/2-i).
T(n+1,2*k-1) + T(n,2*k-1) = A379838(n+1,k) - A379838(n,k).
EXAMPLE
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 1, 0, 1;
[3] 1, 2, 0, 1;
[4] 3, 3, 3, 0, 1;
[5] 6, 9, 6, 4, 0, 1;
[6] 15, 21, 19, 10, 5, 0, 1;
[7] 36, 55, 50, 34, 15, 6, 0, 1;
[8] 91, 141, 139, 99, 55, 21, 7, 0, 1;
...
PROG
(Sage)
def A379893_triangel(dim):
M = matrix(ZZ, dim, dim)
for n in range(dim):
for k in range(n+1):
for i in range(math.floor((n-k-1)/2)+1):
for j in range(n-k-1-2*i+1):
if ((n+k-1-j)%2)==0:
M[n, k]=M[n, k]+(2*k+2)/(n+k+1-2*i-j)*binomial(n-2*i-2, j)*binomial(n-2*i-j-1, (n+k-j-1)/2-i)
M[n, k]=M[n, k]-pow(-1, n+k+1)
return M
CROSSREFS
Row sums give A257520.
Column 1 gives A005043.
Sequence in context: A368514 A289229 A263097 * A286011 A241954 A307047
KEYWORD
nonn,tabl
AUTHOR
Xiaomei Chen, Jan 05 2025
STATUS
approved