[go: up one dir, main page]

login
A377435
Number of perfect-powers x in the range 2^n <= x < 2^(n+1).
0
1, 0, 1, 2, 3, 3, 5, 7, 8, 11, 16, 24, 32, 42, 61, 82, 118, 166, 231, 322, 453, 635, 892, 1253, 1767, 2487, 3505, 4936, 6959, 9816, 13850, 19538, 27578, 38933, 54972, 77641, 109668, 154922, 218879, 309277, 437047, 617658, 872968, 1233896, 1744153, 2465547, 3485478
OFFSET
0,4
COMMENTS
Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.
Also the number of perfect-powers with n bits.
FORMULA
For n != 1, a(n) = A377467(n) + 1.
EXAMPLE
The perfect-powers in each prescribed range (rows):
1
.
4
8 9
16 25 27
32 36 49
64 81 100 121 125
128 144 169 196 216 225 243
256 289 324 343 361 400 441 484
512 529 576 625 676 729 784 841 900 961 1000
Their binary expansions (columns):
1 . 100 1000 10000 100000 1000000 10000000 100000000
1001 11001 100100 1010001 10010000 100100001
11011 110001 1100100 10101001 101000100
1111001 11000100 101010111
1111101 11011000 101101001
11100001 110010000
11110011 110111001
111100100
MATHEMATICA
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All, 2]]>1;
Table[Length[Select[Range[2^n, 2^(n+1)-1], perpowQ]], {n, 0, 15}]
PROG
(Python)
from sympy import mobius, integer_nthroot
def A377435(n):
if n==0: return 1
def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
return f((1<<n+1)-1)-f((1<<n)-1) # Chai Wah Wu, Nov 05 2024
CROSSREFS
The union of all numbers counted is A001597, without powers of two A377702.
The version for squarefree numbers is A077643.
These are the first differences of A188951.
The version for prime-powers is A244508.
For primes instead of powers of 2 we have A377432, zeros A377436.
Not counting powers of 2 gives A377467.
The version for non-perfect-powers is A377701.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A377468 gives the least perfect-power > n.
Sequence in context: A320036 A053271 A035360 * A027587 A363300 A030779
KEYWORD
nonn,new
AUTHOR
Gus Wiseman, Nov 04 2024
EXTENSIONS
a(26)-a(46) from Chai Wah Wu, Nov 05 2024
STATUS
approved