[go: up one dir, main page]

login
A376263
Number of strict integer compositions of n whose leaders of increasing runs are increasing.
2
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 77, 96, 126, 167, 217, 278, 402, 488, 647, 822, 1073, 1340, 1747, 2324, 2890, 3695, 4690, 5924, 7469, 9407, 11718, 15405, 18794, 23777, 29507, 37188, 45720, 57404, 70358, 87596, 110672, 135329, 167018, 206761, 254200, 311920
OFFSET
0,4
COMMENTS
The leaders of increasing runs of a sequence are obtained by splitting it into maximal increasing subsequences and taking the first term of each.
FORMULA
a(n) = Sum_{k>=1} A008289(n,k)*A000110(k-1) for n > 0. - Andrew Howroyd, Sep 18 2024
EXAMPLE
The a(1) = 1 through a(9) = 11 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,3) (2,4) (2,5) (2,6) (2,7)
(1,2,3) (3,4) (3,5) (3,6)
(1,3,2) (1,2,4) (1,2,5) (4,5)
(1,4,2) (1,3,4) (1,2,6)
(1,4,3) (1,3,5)
(1,5,2) (1,5,3)
(1,6,2)
(2,3,4)
(2,4,3)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@#&&Less@@First/@Split[#, Less]&]], {n, 0, 15}]
PROG
(PARI) \\ here Q(n) gives n-th row of A008289.
Q(n)={Vecrev(polcoef(prod(k=1, n, 1 + y*x^k, 1 + O(x*x^n)), n)/y)}
a(n)={if(n==0, 1, my(r=Q(n), s=Vec(serlaplace(exp(exp(x+O(x^#r))- 1)))); sum(k=1, #r, r[k]*s[k]))} \\ Andrew Howroyd, Sep 18 2024
CROSSREFS
For less-greater or greater-less we have A294617.
This is a strict case of A374688, weak version A374635.
The strict less-greater version is A374689, weak version A189076.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions, strict A032020.
A238130, A238279, A333755 count compositions by number of runs.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Sequence in context: A076571 A084783 A265853 * A129838 A032153 A309223
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 18 2024
EXTENSIONS
a(26) onwards from Andrew Howroyd, Sep 18 2024
STATUS
approved