[go: up one dir, main page]

login
A032153
Number of ways to partition n elements into pie slices of different sizes.
17
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 19, 22, 32, 41, 57, 92, 114, 155, 209, 280, 364, 587, 707, 984, 1280, 1737, 2213, 2990, 4390, 5491, 7361, 9650, 12708, 16451, 21567, 27506, 40100, 49201, 65701, 84128, 111278, 140595, 184661, 232356, 300680
OFFSET
0,4
COMMENTS
Number of strict necklace compositions of n. A strict necklace composition of n is a finite sequence of distinct positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. In other words, it is a strict composition of n starting with its least part. - Gus Wiseman, May 31 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 2001 terms from Robert Israel)
C. G. Bower, Transforms (2)
FORMULA
"CGK" (necklace, element, unlabeled) transform of 1, 1, 1, 1, ...
G.f.: Sum_{k >= 1} (k-1)! * x^((k^2+k)/2) / (Product_{j=1..k} 1-x^j). - Vladeta Jovovic, Sep 21 2004
a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} (k-1)! * A008289(n,k) for n > 0. - Alois P. Heinz, Aug 07 2020
EXAMPLE
From Gus Wiseman, May 31 2019: (Start)
Inequivalent representatives of the a(1) = 1 through a(9) = 11 ways to slice a pie:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(12) (13) (14) (15) (16) (17) (18)
(23) (24) (25) (26) (27)
(123) (34) (35) (36)
(132) (124) (125) (45)
(142) (134) (126)
(143) (135)
(152) (153)
(162)
(234)
(243)
(End)
MAPLE
N:= 100: # to get a(0)..a(N)
K:= floor(isqrt(1+8*N)/2):
S:= series(1+add((k-1)!*x^((k^2+k)/2)/mul(1-x^j, j=1..k), k=1..K), x, N+1):
seq(coeff(S, x, j), j=0..N); # Robert Israel, Jul 15 2016
# second Maple program:
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, p!, b(n, i-1, p)+b(n-i, min(n-i, i-1), p+1)))
end:
a:= n-> `if`(n=0, 1, b(n$2, -1)):
seq(a(n), n=1..50); # Alois P. Heinz, Aug 12 2020
MATHEMATICA
max=50; s=Sum[(x^(k(k+1)/2-1)*(k-1)!)/QPochhammer[x, x, k], {k, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Jan 19 2016 *)
neckQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And];
Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], UnsameQ@@#&], neckQ]], {n, 30}] (* Gus Wiseman, May 31 2019 *)
PROG
(PARI)
N=66; q='q+O('q^N);
gf=sum(n=1, N, (n-1)!*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
Vec(gf)
/* Joerg Arndt, Oct 20 2012 */
(PARI) seq(n)=[subst(serlaplace(p/y), y, 1) | p <- Vec(y-1+prod(k=1, n, 1 + x^k*y + O(x*x^n)))] \\ Andrew Howroyd, Sep 13 2018
KEYWORD
nonn,nice
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Sep 13 2018
STATUS
approved