[go: up one dir, main page]

login
A376017
a(n) = Sum_{d|n} d^(n/d - d) * binomial(n/d,d).
2
1, 2, 3, 5, 5, 12, 7, 32, 10, 90, 11, 264, 13, 686, 105, 1809, 17, 5166, 19, 11560, 2856, 28182, 23, 81456, 26, 159770, 61263, 375004, 29, 1122660, 31, 1984032, 1082598, 4456482, 560, 14486329, 37, 22413350, 16888053, 50674560, 41, 174582072, 43, 247627820, 241884450
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(k^2) / (1 - k*x^k)^(k+1).
If p is prime, a(p) = p.
PROG
(PARI) a(n) = sumdiv(n, d, d^(n/d-d)*binomial(n/d, d));
(PARI) my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, x^k^2/(1-k*x^k)^(k+1)))
(Python)
from math import comb
from itertools import takewhile
from sympy import divisors
def A376017(n): return sum(d**((m:=n//d)-d)*comb(m, d) for d in takewhile(lambda d:d**2<=n, divisors(n))) # Chai Wah Wu, Sep 06 2024
CROSSREFS
Cf. A318636.
Sequence in context: A343395 A050368 A156834 * A079024 A357000 A342421
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 06 2024
STATUS
approved