[go: up one dir, main page]

login
A375684
Expansion of e.g.f. 1 / (1 - x * log(1 - x)).
1
1, 0, -2, -3, 16, 90, -204, -4200, -5312, 254016, 1586160, -17970480, -294932736, 790115040, 54224747136, 216483714720, -10481294822400, -137535688281600, 1798183916660736, 58769251106526720, -95282580797291520, -23811620975395061760, -203282679617698222080
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = -n! * Sum_{k=2..n} 1/(k-1) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * k! * |Stirling1(n-k,k)|/(n-k)!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*log(1-x))))
(PARI) a(n) = n!*sum(k=0, n\2, (-1)^k*k!*abs(stirling(n-k, k, 1))/(n-k)!);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 24 2024
STATUS
approved