OFFSET
0,3
COMMENTS
Here, a branching node is a node with at least two children.
In other words, a(n) is the number of labeled rooted trees on n nodes such that the path from every node towards the root reaches a branching node (or the root) in one step.
Also labeled rooted trees that are lone-child-avoiding except possibly for the root. The unlabeled version is A198518. - Gus Wiseman, Jan 22 2020
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..200
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
FORMULA
E.g.f.: A(x) satisfies 1/(1 - (A(x) - x)) = B(x) where B(x) is the e.g.f. for A231797.
a(n) ~ (1-exp(-1))^(n-1/2) * n^(n-1). - Vaclav Kotesovec, Jan 30 2015
EXAMPLE
a(5) = 85:
...0................0...............0-o...
...|.............../ \............ /|\....
...o..............o o...........o o o...
../|\............/ \ ...................
.o o o..........o o ..................
These trees have 20 + 60 + 5 = 85 labelings.
From Gus Wiseman, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches]) are:
1 1[2] 1[2,3] 1[2,3,4]
2[1] 2[1,3] 1[2[3,4]]
3[1,2] 1[3[2,4]]
1[4[2,3]]
2[1,3,4]
2[1[3,4]]
2[3[1,4]]
2[4[1,3]]
3[1,2,4]
3[1[2,4]]
3[2[1,4]]
3[4[1,2]]
4[1,2,3]
4[1[2,3]]
4[2[1,3]]
4[3[1,2]]
(End)
MATHEMATICA
nn = 20; b = 1 + Sum[nn = n; n! Coefficient[Series[(Exp[x] - x)^n, {x, 0, nn}], x^n]*x^n/n!, {n, 1, nn}]; c = Sum[a[n] x^n/n!, {n, 0, nn}]; sol = SolveAlways[b == Series[1/(1 - (c - x)), {x, 0, nn}], x]; Flatten[Table[a[n], {n, 0, nn}] /. sol]
nn = 30; CoefficientList[Series[1+x-1/Sum[SeriesCoefficient[(E^x-x)^n, {x, 0, n}]*x^n, {n, 0, nn}], {x, 0, nn}], x] * Range[0, nn]! (* Vaclav Kotesovec, Jan 30 2015 *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
lrt[set_]:=If[Length[set]==0, {}, Join@@Table[Apply[root, #]&/@Join@@Table[Tuples[lrt/@stn], {stn, sps[DeleteCases[set, root]]}], {root, set}]];
Table[Length[Select[lrt[Range[n]], FreeQ[Z@@#, _Integer[_]]&]], {n, 6}] (* Gus Wiseman, Jan 22 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jan 29 2015
STATUS
approved