[go: up one dir, main page]

login
A375310
Numbers k such that k!^2 + (k-1)!^2 - 1 is prime.
0
14, 32, 58, 182, 240, 474, 824, 3018, 5977, 9088
OFFSET
1,1
COMMENTS
Contains no primes. - Robert Israel, Aug 12 2024
Moreover: If k is any prime, then k must divide the given formula and if k is not a prime the least factor that divides the formula is bigger than k and smaller than the square root of the result of the formula (if it exist, if not: k is a term). - Karl-Heinz Hofmann, Aug 20 2024
a(11) > 15000. - Karl-Heinz Hofmann, Sep 08 2024
EXAMPLE
14 is a term, because 14!^2 + 13!^2 - 1 = 7600054456551997440000 + 38775788043632640000 - 1 = 7638830244595630079999 is a prime number.
MAPLE
select(k -> isprime((k^2+1)*((k-1)!)^2-1), [$1..1000]); # Robert Israel, Aug 12 2024
PROG
(PARI) is(k) = isprime(k!^2 + (k-1)!^2 - 1);
(Python)
from itertools import count, islice
from sympy import isprime
def A375310_gen(): # generator of terms
f = 1
for k in count(1):
if isprime((k**2+1)*f-1):
yield k
f *= k**2
A375310_list = list(islice(A375310_gen(), 6)) # Chai Wah Wu, Oct 02 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Arsen Vardanyan, Aug 11 2024
EXTENSIONS
a(8) from Hugo Pfoertner, Aug 13 2024
a(9) from Michael S. Branicky, Aug 14 2024
a(10) from Karl-Heinz Hofmann, Sep 08 2024
STATUS
approved