[go: up one dir, main page]

login
A375194
Decimal expansion of the sagitta of a regular 12-gon with unit side length.
9
6, 5, 8, 2, 6, 2, 4, 8, 7, 9, 3, 6, 9, 7, 9, 2, 6, 7, 3, 5, 7, 6, 3, 2, 2, 8, 7, 0, 4, 8, 5, 8, 5, 5, 1, 7, 9, 6, 4, 0, 7, 0, 5, 1, 1, 1, 1, 6, 1, 8, 7, 8, 6, 7, 7, 6, 7, 8, 2, 6, 6, 2, 8, 9, 4, 8, 7, 9, 9, 1, 9, 5, 0, 5, 3, 1, 1, 0, 1, 4, 1, 5, 4, 5, 5, 0, 3, 9, 0, 3
OFFSET
-1,1
LINKS
Eric Weisstein's World of Mathematics, Regular Polygon.
Eric Weisstein's World of Mathematics, Sagitta
FORMULA
Equals tan(Pi/24)/2 = A343062/2.
Equals A188887 - A375193.
EXAMPLE
0.0658262487936979267357632287048585517964070511116...
MATHEMATICA
First[RealDigits[Tan[Pi/24]/2, 10, 100]]
CROSSREFS
Cf. A188887 (circumradius), A375193 (apothem), A178809 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A375069 (hexagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon).
Cf. A343062.
Sequence in context: A195446 A262993 A201764 * A147313 A242759 A021607
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Aug 04 2024
STATUS
approved