OFFSET
1,2
COMMENTS
a(n) is the diameter of the circle around the Vitruvian Man when the square has sides of unit length. See illustration in links. - Kival Ngaokrajang, Jan 29 2015
The iterated function z^2 - 1/4, starting from z = 0, gives a pretty good rational approximation of (-1)((1 + sqrt(2))/2 - 1) to more than eight decimal digits after just twenty steps. - Alonso del Arte, Apr 09 2016
This sequence describes the minimum Euclidean length of the optimal solution of the well-known Nine dots puzzle, published in Sam Loyd’s Cyclopedia of puzzles (1914), p. 301 since a valid polygonal chain satisfying the conditions of the above-mentioned problem is (0, 1)-(0, 3)-(3, 0)-(0, 0)-(2, 2), and its total length is equal to 5*(1 + sqrt(2)) = 12.071... (i.e., 10*(1 + sqrt(2))/2). - Marco Ripà, Jul 22 2024
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Kival Ngaokrajang, Illustration of Vitruvian Man and construction rule
Marco Ripà, Shortest polygonal chains covering each planar square grid, arXiv:2207.08708v3 [math.CO], 2024.
Wikipedia, Vitruvian Man
EXAMPLE
(1 + sqrt(2))/2 = 1.20710678118654752440...
MATHEMATICA
First@RealDigits[(1 + Sqrt[2])/2, 10, 105] (* Michael De Vlieger, Jan 29 2015 *)
PROG
(PARI) (1+sqrt(2))/2 \\ Altug Alkan, Apr 16 2016
CROSSREFS
KEYWORD
AUTHOR
Klaus Brockhaus, Apr 02 2010
STATUS
approved