[go: up one dir, main page]

login
A374222
a(n) = 1 if sigma(n) and sopfr(n) are both multiples of 3, otherwise 0, where sigma is the sum of divisors, and sopfr is the sum of prime factors with repetition.
2
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1
OFFSET
1
FORMULA
a(n) = A079978(A374126(n)).
a(n) = (1-A353815(n)) * A373371(n).
a(3*n) = a(n).
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A374222(n) = (!(sigma(n)%3) && !(A001414(n)%3));
CROSSREFS
Characteristic function of A374223.
Sequence in context: A293162 A115790 A025460 * A169673 A101605 A358753
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 08 2024
STATUS
approved