[go: up one dir, main page]

login
A374209
Number of terms in Zeckendorf representation needed to write A113177(n), where A113177 is fully additive with a(p) = Fibonacci(p).
2
0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 1, 2, 1, 2, 3
OFFSET
1,9
COMMENTS
Indices for the first occurrences of k=0..6 are: 1, 2, 9, 63, 693, 7623, 105105.
The claim a(n) <= bigomega(n) is true because A007895(n) is the minimum number of Fibonacci numbers which sum to n, regardless of adjacency or duplication. See Apr 17 2015 comments there.
LINKS
FORMULA
a(n) = A007895(A113177(n)).
a(p) = 1 for all primes p.
a(n) <= A001222(n), see comments.
PROG
(PARI)
A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])));
A374209(n) = if(isprime(n), 1, A007895(A113177(n)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 02 2024
STATUS
approved