[go: up one dir, main page]

login
A372502
The number of "Fermi-Dirac primes" (A050376) that divide n.
1
0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 3, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 3, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 4, 3, 2, 1, 4, 2, 2, 2
OFFSET
1,4
COMMENTS
Differs from A345222 at n = 64, 128, 192, 320, 384, ... .
LINKS
FORMULA
Additive with a(p^e) = A070939(e).
a(n) = A064547(n) + A372332(n).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=1} P(2^k) = 0.53331724743088069672..., and P(s) is the prime zeta function.
MATHEMATICA
f[p_, e_] := BitLength[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecsum(apply(x -> exponent(x) + 1, factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, May 04 2024
STATUS
approved