[go: up one dir, main page]

login
A372186
Numbers m such that 20*m + 1, 80*m + 1, 100*m + 1, and 200*m + 1 are all primes.
4
333, 741, 1659, 1749, 2505, 2706, 2730, 4221, 4437, 4851, 5625, 6447, 7791, 7977, 8229, 8250, 9216, 10833, 12471, 13950, 14028, 15147, 16002, 17667, 18207, 18246, 19152, 20517, 23400, 23421, 23961, 25689, 26247, 28587, 28608, 30363, 31584, 34167, 36330, 36378
OFFSET
1,1
COMMENTS
If m is a term, then (20*m + 1) * (80*m + 1) * (100*m + 1) * (200*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{4,4}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 393575432565765601, 9648687289456956001, 242412946401534283201, ...
LINKS
Ken Nakamula, Hirofumi Tsumura, and Hiroaki Komai, New polynomials producing absolute pseudoprimes with any number of prime factors, arXiv:math/0702410 [math.NT], 2007.
EXAMPLE
333 is a term since 20*333 + 1 = 6661, 80*333 + 1 = 26641, 100*333 + 1 = 33301, and 200*333 + 1 = 66601 are all primes.
MATHEMATICA
q[n_] := AllTrue[{20, 80, 100, 200}, PrimeQ[# * n + 1] &]; Select[Range[40000], q]
PROG
(PARI) is(n) = isprime(20*n + 1) && isprime(80*n + 1) && isprime(100*n + 1) && isprime(200*n + 1);
CROSSREFS
Similar sequences: A046025, A257035, A206024, A206349, A372187, A372188.
Sequence in context: A227228 A066801 A066349 * A043503 A202311 A319011
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Apr 21 2024
STATUS
approved