[go: up one dir, main page]

login
A206349
Even numbers k such that 6k+1, 12k+1, 18k+1, 36k+1 and 72k+1 are all primes.
8
380, 506, 3796, 6006, 8976, 9186, 10920, 12896, 14476, 14800, 15386, 32326, 38460, 39536, 40420, 41456, 43430, 60076, 74676, 76986, 82530, 87390, 99486, 107926, 112840, 126996, 127920, 144326, 179566, 181986, 188526, 193006, 194616, 205200, 217520, 230370
OFFSET
1,1
COMMENTS
(6n+1)*(12n+1)*(18n+1)*(36n+1)*(72n+1) is a Carmichael number for all n in this sequence.
More precisely, these products are in A112428 = A002997 intersect A014614. - M. F. Hasler, Apr 14 2015
LINKS
Jack Chernick, On Fermat's simple theorem, Bull. Amer. Math. Soc., Volume 45, Number 4 (1939), pp. 269-274.
MATHEMATICA
Select[Range[250000], PrimeQ[6 #+1] && PrimeQ[12 #+1] && PrimeQ[18 #+1] && PrimeQ[36 #+1] && PrimeQ[72 #+1] && Mod[#, 2] == 0&]
PROG
(PARI) is_A206349(n, c=72)=!bittest(n, 0)&&!until(bittest(c\=2, 0)&&9>c+=3, isprime(n*c+1)||return) \\ M. F. Hasler, Apr 14 2015
CROSSREFS
Sequence in context: A027503 A340200 A099728 * A252130 A252123 A158597
KEYWORD
nonn,easy
AUTHOR
STATUS
approved