[go: up one dir, main page]

login
A371281
Last digit of the product of decimal digits of n.
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 0, 4, 8, 2, 6, 0, 4, 8, 2, 6, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 6, 2, 8, 4, 0, 6, 2, 8, 4, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 8, 6, 4, 2, 0, 8, 6, 4, 2, 0, 9, 8
OFFSET
0,3
COMMENTS
n=0 is taken as one 0 digit so that its product of digits is A007954(0) = 0.
LINKS
FORMULA
a(n) = A007954(n) mod 10.
a(n) = A010879(A007954(n)).
EXAMPLE
n = 15: a(15) = 1*5 mod 10 = 5.
n = 26: a(26) = 2*6 mod 10 = 2.
MAPLE
a:= n-> `if`(n<10, n, irem(n, 10, 'q')*a(q) mod 10):
seq(a(n), n=0..92); # Alois P. Heinz, Mar 17 2024
MATHEMATICA
a[n_] := Mod[Times @@ IntegerDigits[n], 10]; Array[a, 100, 0] (* Amiram Eldar, Mar 17 2024 *)
PROG
(Python)
from math import prod
def a(n): return prod(map(int, str(n)))%10
print([a(n) for n in range(93)]) # Michael S. Branicky, Mar 17 2024
(PARI) a(n) = if (n==0, 0, vecprod(digits(n)) % 10); \\ Michel Marcus, Mar 17 2024
CROSSREFS
Cf. A007954, A010879, A036987 (similar for 2 instead of 10), A053837.
Sequence in context: A175421 A175420 A062078 * A031347 A087471 A128212
KEYWORD
nonn,base
AUTHOR
Ctibor O. Zizka, Mar 17 2024
STATUS
approved