[go: up one dir, main page]

login
A087471
Final digit resulting from iterations of the product of the two numbers formed from the alternating digits of n.
5
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 3, 6, 9, 2, 5, 8, 2, 8, 4, 0, 4, 8, 2, 6, 0, 8, 6, 6, 8, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0, 0, 6, 2, 8, 8, 0, 8, 8, 6, 0, 0, 7, 4, 2, 6, 5, 8, 8, 0, 8, 0, 8, 6, 8, 6, 0, 6, 0, 8, 4, 0, 9, 8, 4, 8, 0, 0, 8, 4, 8, 0, 0, 0, 0, 0, 0
OFFSET
1,2
COMMENTS
A087472(n) gives the number of iterations required for Murthy's function, f(n), to reach a single digit. A087473(n) gives the smallest number that requires n iterations of Murthy's function to reach a single digit. The n-th row of triangle A087474 gives the n successive iterations of Murthy's function on A087473(n).
Apart from the undefined a(0), the sequence differs from A031347 first at n=121. [From R. J. Mathar, Sep 11 2008]
LINKS
FORMULA
a(n) = a(f(n)), where f(n) is Murthy's function: f(1234)=13*24=312, f(12345)=135*24=3240, f(123456)=135*246=33210.
EXAMPLE
a(1234) = a(13*24) = a(312) = a(32*1) = a(32) = a(3*2) = 6.
MATHEMATICA
Table[NestWhile[With[{idn=IntegerDigits[#]}, FromDigits[Take[idn, {1, -1, 2}]] FromDigits[Take[idn, {2, -1, 2}]]]&, n, #>9&], {n, 110}] (* Harvey P. Dale, Dec 05 2014 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved