[go: up one dir, main page]

login
A369801
Maximum number of segments between n points on a circle so that they can be colored in 2 colors so that each of them intersects (at an internal point) at most one other segment of the same color.
1
1, 3, 6, 10, 15, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, 64, 67, 72, 75, 80, 83, 88, 91, 96, 99, 104, 107, 112, 115, 120, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, 168, 171, 176, 179, 184, 187, 192, 195, 200, 203, 208, 211, 216, 219, 224, 227
OFFSET
2,2
LINKS
Bulgarian Winter Mathematical Competition "Atanas Radev", Problems and solutions brochure, Problem 9.4, p. 6 (in Bulgarian).
Art of Problem Solving, High School Olympiads - Colored segments, 2024.
FORMULA
a(n) = n*(n-1)/2 for n<=6, a(2*k+1) = 8*k-5 if k>=3, a(2*k) = 8*k-8 if k>=4.
G.f.: -x^2*(x^7-2*x^4-2*x^3-2*x^2-2*x-1)/((x+1)*(x-1)^2).
a(n) = A047452(n-2) + 2 = A047461(n-1) - 1 for n >= 7. - Hugo Pfoertner, Feb 05 2024
MATHEMATICA
Drop[CoefficientList[Series[ -x^2*(x^7-2*x^4-2*x^3-2*x^2-2*x-1)/((x+1)*(x-1)^2), {x, 0, 59}], x], 2] (* James C. McMahon, Mar 08 2024 *)
PROG
(Python)
def A369801(n): return (n-2<<2)-(n&1) if n>=7 else (1, 3, 6, 10, 15)[n-2] # Chai Wah Wu, Mar 30 2024
CROSSREFS
Sequence in context: A310072 A310073 A310074 * A310075 A347275 A233774
KEYWORD
nonn,easy
AUTHOR
Mladen Valkov, Feb 01 2024
STATUS
approved