[go: up one dir, main page]

login
A369767
Maximal coefficient of Product_{i=1..n} Sum_{j=0..n} x^(i*j).
1
1, 1, 2, 6, 31, 231, 2347, 29638, 449693, 7976253, 162204059, 3722558272, 95221978299, 2687309507102, 82967647793153, 2782190523572392, 100715040802229833, 3914979746952224303, 162662679830709439637, 7194483479557973730982, 337519906320930133470189
OFFSET
0,3
MAPLE
a:= n-> max(coeffs(expand(mul(add(x^(i*j), j=0..n), i=1..n)))):
seq(a(n), n=0..20); # Alois P. Heinz, Jan 31 2024
MATHEMATICA
Table[Max[CoefficientList[Product[Sum[x^(i j), {j, 0, n}], {i, 1, n}], x]], {n, 0, 20}]
PROG
(PARI) a(n) = vecmax(Vec(prod(i=1, n, sum(j=0, n, x^(i*j))))); \\ Michel Marcus, Jan 31 2024
(Python)
from collections import Counter
def A369767(n):
c = {j:1 for j in range(n+1)}
for i in range(2, n+1):
d = Counter()
for k in c:
for j in range(0, i*n+1, i):
d[j+k] += c[k]
c = d
return max(c.values()) # Chai Wah Wu, Jan 31 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2024
STATUS
approved