[go: up one dir, main page]

login
A366377
Number of branching factorizations of the primorial inflation of n.
4
0, 1, 3, 2, 19, 11, 207, 5, 62, 113, 3211, 45, 64383, 1709, 911, 15, 1581259, 345, 45948927, 645, 17753, 33797, 1541641771, 195, 9332, 822821, 2405, 12405, 58645296063, 6525, 2494091717899, 51, 428309, 23765093, 223031, 1890, 117258952478847, 793795349, 12293957, 3585, 6038838138717931, 154605, 338082244882740543, 296805
OFFSET
1,3
COMMENTS
Conjecture: Sequence is injective (no value occurs more than once). If true, then also the conjecture given in A277120 is correct. See also A366884.
LINKS
FORMULA
a(n) = A277120(A108951(n)).
a(n) = A366884(A329901(n)).
For n >= 1, a(2^n) = A007317(n), a(A000040(n)) = A052886(n).
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) }; \\ From A108951
memoA277120 = Map();
A277120(n) = if(1==n, 0, my(v); if(mapisdefined(memoA277120, n, &v), v, v = 1+sumdiv(n, d, if((1==d)||(d*d)>n, 0, if((d*d)==n, 1, 2)*A277120(d)*A277120(n/d))); mapput(memoA277120, n, v); (v)));
CROSSREFS
Permutation of A366884.
Sequence in context: A078073 A317927 A075568 * A057026 A032448 A066195
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 31 2023
STATUS
approved