[go: up one dir, main page]

login
A365932
a(n) = the number of cubes (of integers > 0) that have bit length n.
2
1, 0, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 5, 5, 6, 9, 10, 13, 17, 21, 26, 34, 42, 52, 67, 84, 105, 134, 167, 211, 267, 335, 422, 533, 670, 845, 1065, 1341, 1690, 2130, 2682, 3380, 4259, 5365, 6760, 8518, 10730, 13520, 17035, 21461, 27040, 34069, 42923, 54080, 68137, 85847
OFFSET
1,7
COMMENTS
Number of cubes in the range: 2^(n-1) <= k^3 < 2^n-1.
There is no need to include 2^n-1 because it is a Mersenne number and it cannot be a power anyway.
FORMULA
a(n) = floor((2^n-1)^(1/3)) - floor((2^(n-1)-1)^(1/3)) for n > 0.
Limit_{n->oo} a(n)/a(n-1) = 2^(1/3) = A002580.
EXAMPLE
For n = 13; a(n) = 5; following 5 cubes have a bit length of 13: 16^3, 17^3, 18^3, 19^3 and 20^3.
MATHEMATICA
a[n_] := Floor[Surd[2^n-1, 3]] - Floor[Surd[2^(n-1)-1, 3]]; Array[a, 56] (* Amiram Eldar, Oct 30 2023 *)
PROG
(Python)
from sympy import integer_nthroot
def A365932(n):
return integer_nthroot(2**n-1, 3)[0] - integer_nthroot(2**(n-1)-1, 3)[0]
print([A365932(n) for n in range(1, 57)])
CROSSREFS
Cf. A004632.
Cf. A017981 (partial sums).
Sequence in context: A291905 A347584 A366398 * A240853 A363094 A319849
KEYWORD
nonn,easy,base
AUTHOR
Karl-Heinz Hofmann, Oct 05 2023
STATUS
approved