OFFSET
3,5
COMMENTS
See Sommars and Sommars (1998) for a complete analysis of the problem.
LINKS
Paolo Xausa, Table of n, a(n) for n = 3..10002 (rows 3..2502 of array, flattened).
Bjorn Poonen and Michael Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG], 1995-2006.
Steven E. Sommars and Tim Sommars, The Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon, Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.5.
Paolo Xausa, Illustration of T(9,6).
FORMULA
EXAMPLE
Array begins:
n\k| 3 4 5 6
---+---------------------------
3 | 1, 0, 0, 0;
4 | 4, 4, 0, 0;
5 | 10, 20, 5, 0;
6 | 20, 60, 30, 0;
7 | 35, 140, 105, 7;
8 | 56, 280, 280, 16;
9 | 84, 504, 630, 84;
10 | 120, 840, 1260, 180;
...
MATHEMATICA
A363174list[rowmax_]:=Module[{d}, d[m_, n_]:=Boole[Divisible[n, m]]; Table[Binomial[n, k]If[4<=k<=5, k, 1]-If[k==6&&EvenQ[n], ((1/8n^2-9/8n+7/4)d[2, n]+3/4d[4, n]+(6n-106/3)d[6, n]-33d[12, n]-36d[18, n]-24d[24, n]+96d[30, n]+72d[42, n]+264d[60, n]+96d[84, n]+48d[90, n]+96d[120, n]+48d[210, n])n, 0], {n, 3, rowmax}, {k, 3, 6}]]; A363174list[20]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paolo Xausa, May 19 2023
STATUS
approved