[go: up one dir, main page]

login
A282593
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its king-move neighbors, with the exception of exactly two elements.
7
0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 12, 84, 12, 0, 0, 52, 533, 533, 52, 0, 0, 220, 4083, 6116, 4083, 220, 0, 0, 916, 28060, 73469, 73469, 28060, 916, 0, 0, 3700, 184242, 855448, 1551972, 855448, 184242, 3700, 0, 0, 14752, 1182850, 9375582, 30003220, 30003220, 9375582
OFFSET
1,8
COMMENTS
Table starts
.0.....0........0...........0.............0...............0..................0
.0.....0........4..........12............52.............220................916
.0.....4.......84.........533..........4083...........28060.............184242
.0....12......533........6116.........73469..........855448............9375582
.0....52.....4083.......73469.......1551972........30003220..........546521435
.0...220....28060......855448......30003220.......957470936........28829389941
.0...916...184242.....9375582.....546521435.....28829389941......1436405360064
.0..3700..1182850...100393362....9746960274....848630437758.....69900439513231
.0.14752..7409734..1053618468..169306647351..24308348318637...3307105747958168
.0.58156.45609366.10851865132.2884275163813.682719076871766.153363953593877372
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 12]
k=3: [order 24]
k=4: [order 42]
k=5: [order 93]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..1. .0..0..1..1. .0..0..0..1. .0..0..0..0. .0..1..1..0
..1..1..0..0. .0..0..0..0. .0..1..1..1. .0..1..1..0. .0..0..0..1
..1..0..0..0. .0..1..1..0. .0..1..0..1. .0..0..0..1. .1..0..1..0
..1..1..1..0. .1..1..0..0. .0..0..0..0. .0..1..1..1. .1..1..0..1
CROSSREFS
Sequence in context: A284609 A363174 A290448 * A276339 A260318 A075866
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 19 2017
STATUS
approved