[go: up one dir, main page]

login
A360539
a(n) is the cubefree part of n: the largest unitary divisor of n that is a cubefree number (A004709).
10
1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
OFFSET
1,2
COMMENTS
Equivalently, a(n) is the least divisor d of n such that n/d is a cubefull number (A036966).
LINKS
FORMULA
a(n) = 1 if and only if n is a cubefull number (A036966).
a(n) = n if and only if n is a cubefree number (A004709).
a(n) >= A055231(n) with equality if and only if n is in A337050.
a(n) = n/A360540(n).
Multiplicative with a(p^e) = p^e if e <= 2, and 1 otherwise.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(-s) + p^(2-2*s) - p^(1-2*s) - p^(2-3*s) + p^(-3*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^5 + 1/p^6 - 1/p^7) = 0.4213813264... .
MATHEMATICA
f[p_, e_] := If[e < 3, p^e, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] < 3, f[i, 1]^f[i, 2], 1)); }
(Python)
from math import prod
from sympy import factorint
def A360539(n): return prod(p**e for p, e in factorint(n).items() if e<=2) # Chai Wah Wu, Aug 06 2024
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Feb 11 2023
STATUS
approved