[go: up one dir, main page]

login
A359580
Numbers that are either an odd squarefree number squared or twice such a number.
1
1, 2, 9, 18, 25, 49, 50, 98, 121, 169, 225, 242, 289, 338, 361, 441, 450, 529, 578, 722, 841, 882, 961, 1058, 1089, 1225, 1369, 1521, 1681, 1682, 1849, 1922, 2178, 2209, 2450, 2601, 2738, 2809, 3025, 3042, 3249, 3362, 3481, 3698, 3721, 4225, 4418, 4489, 4761, 5041, 5202, 5329, 5618, 5929, 6050, 6241
OFFSET
1,2
COMMENTS
Numbers in whose prime factorization the exponent of 2 can be only 0 or 1, and the exponent of any odd prime can be only 0 or 2.
FORMULA
Sum_{n>=1} 1/a(n) = 18/Pi^2. - Amiram Eldar, Jan 07 2023
MATHEMATICA
Select[Range[6000], (e = IntegerExponent[#, 2]) < 2 && SquareFreeQ[Sqrt[#/2^e]] &] (* Amiram Eldar, Jan 07 2023 *)
PROG
(PARI) isA359580(n) = A359549(n);
(Python)
from itertools import count, islice
from sympy import factorint
def A359580_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:(m:=(~n & n-1).bit_length())<=1 and all(e==2 for e in factorint(n>>m).values()), count(max(startvalue, 1)))
A359580_list = list(islice(A359580_gen(), 20)) # Chai Wah Wu, Jan 11 2023
CROSSREFS
Cf. A359549 (characteristic function).
Positions of odd terms in A046692, A327276, A327278, A359548.
Cf. also A056911, A062503.
Sequence in context: A346233 A358946 A282519 * A103256 A028881 A294535
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 07 2023
STATUS
approved