[go: up one dir, main page]

login
A354794
Triangle read by rows. The Bell transform of the sequence {m^m | m >= 0}.
9
1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 27, 19, 6, 1, 0, 256, 175, 55, 10, 1, 0, 3125, 2101, 660, 125, 15, 1, 0, 46656, 31031, 9751, 1890, 245, 21, 1, 0, 823543, 543607, 170898, 33621, 4550, 434, 28, 1, 0, 16777216, 11012415, 3463615, 688506, 95781, 9702, 714, 36, 1
OFFSET
0,8
COMMENTS
For the definition of the Bell transform see A264428. The Bell transform of {(-m)^m | m >= 0} is A039621. The numbers A039621(n, k) are known as the Lehmer-Comtet numbers of 2nd kind. We think it is more natural to use Bell_{n, k}({m^m}) as the basis for the definition (and let the triangle start at (0, 0)).
REFERENCES
Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
LINKS
D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
Peter Luschny, The Bell transform
Wikipedia, Bell polynomials.
FORMULA
T(n, k) = Bell_{n, k}(A000312), where Bell_{n, k} is the partial Bell polynomial evaluated over the powers m^m (with 0^0 = 1). See the Mathematica program.
T(n, k) = Sum_{j=0..k-1} (-1)^j*(n-j-1)^(n - 1)/(j! * (k-1-j)!) for 0 <= k < n and T(n, n) = 1.
T(n, k) = r(k-1, n-k, n-k) for n,k >= 1 and T(0, 0) = 1, where r(n, k, m) = m*r(n, k-1, m) + r(n-1, k, m+1) and r(n, 0, m) = 1. (see Vladimir Kruchinin's formula in A039621).
Sum_{k=1..n} binomial(k + x - 1, k-1)*(k-1)!*T(n, k) = (n + x)^(n - 1) for n >= 1.
Sum_{k=1..n} (-1)^(k+j)*Stirling1(k, j)*T(n, k) = n^(n-j)*binomial(n-1, j-1) for n >= 1, which are, up to sign, the coefficients of the Abel polynomials (A137452).
From Werner Schulte, Jun 14 2022 and Jun 19 2022: (Start)
E.g.f. of column k >= 0: (Sum_{i>0} (i-1)^(i-1) * t^i / i!)^k / k!.
Conjecture: T(n, k) = Sum_{i=0..n-k} A048994(n-k, i) * A048993(n+i-1, n-1) for 0 < k <= n and T(n, 0) = 0^n for n >= 0; proved by Mike Earnest, see link at A354797. (End)
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 4, 3, 1;
[4] 0, 27, 19, 6, 1;
[5] 0, 256, 175, 55, 10, 1;
[6] 0, 3125, 2101, 660, 125, 15, 1;
[7] 0, 46656, 31031, 9751, 1890, 245, 21, 1;
[8] 0, 823543, 543607, 170898, 33621, 4550, 434, 28, 1;
[9] 0, 16777216, 11012415, 3463615, 688506, 95781, 9702, 714, 36, 1;
MAPLE
T := (n, k) -> if n = k then 1 else
add((-1)^j*(n-j-1)^(n-1)/(j!*(k-1-j)!), j = 0.. k-1) fi:
seq(seq(T(n, k), k = 0..n), n = 0..9);
# Alternatively, using the function BellMatrix from A264428:
BellMatrix(n -> n^n, 9);
# Or by recursion:
R := proc(n, k, m) option remember;
if k < 0 or n < 0 then 0 elif k = 0 then 1 else
m*R(n, k-1, m) + R(n-1, k, m+1) fi end:
A039621 := (n, k) -> ifelse(n = 0, 1, R(k-1, n-k, n-k)):
MATHEMATICA
Unprotect[Power]; Power[0, 0] = 1; pow[n_] := n^n;
R = Range[0, 9]; T[n_, k_] := BellY[n, k, pow[R]];
Table[T[n, k], {n, R}, {k, 0, n}] // Flatten
PROG
(Python)
from functools import cache
@cache
def t(n, k, m):
if k < 0 or n < 0: return 0
if k == 0: return n ** k
return m * t(n, k - 1, m) + t(n - 1, k, m + 1)
def A354794(n, k): return t(k - 1, n - k, n - k) if n != k else 1
for n in range(9): print([A354794(n, k) for k in range(n + 1)])
CROSSREFS
Cf. A264428, A039621 (signed variant), A195979 (row sums), A000312 (column 1), A045531 (column 2), A281596 (column 3), A281595 (column 4), A000217 (diagonal 1), A215862 (diagonal 2), A354795 (matrix inverse), A137452 (Abel).
Sequence in context: A327366 A327069 A327334 * A355401 A195596 A332054
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jun 09 2022
STATUS
approved