[go: up one dir, main page]

login
A354108
a(n) = 1 if n is neither an odd prime power nor twice an odd prime power, otherwise 0.
5
1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0
OFFSET
1
COMMENTS
See comments in A354109 for a proof of the equivalence of the formulas.
FORMULA
For n > 4, a(n) = 1 - A211487(n).
a(n) = 1 if A354107(n) is equal to A353768(n), otherwise 0.
a(n) = 1 iff A010873(abs(A354101(n))) is 0.
a(n) = [A000010(n) == A354102(n) (mod 4)], where [ ] is the Iverson bracket.
a(n) >= A354188(n).
MATHEMATICA
a[n_] := If[! (OddQ[n] && PrimePowerQ[n]) && ! (OddQ[n/2] && PrimePowerQ[n/2]), 1, 0]; Array[a, 100] (* Amiram Eldar, May 20 2022 *)
PROG
(PARI) A354108(n) = ((n && !bitand(n, n-1)) || !isprimepower(n/(2-(n%2))));
(PARI) A354108(n) = (A353768(n) == A353768(A267099(n)));
CROSSREFS
Characteristic function of A354109.
Sequence in context: A353518 A353687 A354918 * A181101 A379274 A321512
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 18 2022
STATUS
approved