[go: up one dir, main page]

login
A353638
a(n) = 1 if n is odd and A064989(sigma(n)) < A064989(n), otherwise 0. Here A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.
3
0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1
OFFSET
1
FORMULA
a(n) = A000035(n) * A348737(A064989(n)).
For n > 1, a(n) = A000035(n) - A353639(n). [Conjectured, see comments in A336702]
PROG
(PARI)
A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A353638(n) = ((n%2) && (A064989(sigma(n))<A064989(n)));
CROSSREFS
Characteristic function of A348748 (see also A348738).
Sequence in context: A257531 A151763 A353558 * A324908 A353760 A358770
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2022
STATUS
approved