[go: up one dir, main page]

login
A353514
a(n) = 1 if A328572(2*n) is of the form 4m+3, and 0 otherwise.
2
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0
OFFSET
0
COMMENTS
Even bisection of A353513. Also the odd bisection. That both bisections are equal follows from the identity A276086(2n+1) = 2 * A276086(2n) which further implies that A328572(2n+1) = A328572(2n).
FORMULA
a(n) = A353513(2*n) = A353513(2*n + 1).
PROG
(PARI)
A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
A353514(n) = (3==(A328572(n+n)%4));
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 01 2022
STATUS
approved