[go: up one dir, main page]

login
A353471
a(n) = 1 if n is a prime or a squarefree semiprime, otherwise 0.
2
0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0
OFFSET
1
COMMENTS
a(n) = 1 if the number of the divisors of n, tau(n), is equal to the twice number of distinct prime factors of n, 2*omega(n), otherwise 0.
FORMULA
a(n) = A010051(n) + A280710(n).
a(n) = [A000005(n) == 2*A001221(n)], where [ ] is the Iverson bracket.
PROG
(PARI) A353471(n) = (numdiv(n)==2*omega(n));
CROSSREFS
Characteristic function of A167171, the union of primes (A000040) and squarefree semiprimes (A006881).
Sequence in context: A323153 A288861 A030190 * A157658 A296211 A341642
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 21 2022
STATUS
approved