[go: up one dir, main page]

login
A350889
Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that k*(smallest part) = (number of parts).
9
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 4, 5, 5, 3, 2, 1, 1, 2, 3, 4, 7, 6, 5, 3, 2, 1, 1, 3, 4, 5, 8, 9, 7, 5, 3, 2, 1, 1, 3, 5, 6, 10, 11, 10, 7, 5, 3, 2, 1, 1, 4, 6, 7, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 4, 8, 8, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
OFFSET
1,13
COMMENTS
Column k is asymptotic to r^2 * (k*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((k*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(Pi*k*(k - (k-2)*r^2)) * n^(3/4)), where r is the positive real root of the equation r^2 = 1 - r^k. - Vaclav Kotesovec, Oct 14 2024
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50).
FORMULA
G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..k*i-1} (1-x^j).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
1, 1, 1, 1;
1, 1, 2, 1, 1;
1, 1, 2, 2, 1, 1;
1, 1, 3, 3, 2, 1, 1;
1, 2, 3, 4, 3, 2, 1, 1;
2, 2, 4, 5, 5, 3, 2, 1, 1;
2, 3, 4, 7, 6, 5, 3, 2, 1, 1;
3, 4, 5, 8, 9, 7, 5, 3, 2, 1, 1;
PROG
(PARI) T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, k*i-1, 1-x^j+x*O(x^n))), n);
(Ruby)
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def A(n)
a = Array.new(n, 0)
partition(n, 1, n).each{|ary|
(1..n).each{|i|
a[i - 1] += 1 if i * ary[-1] == ary.size
}
}
a
end
def A350889(n)
(1..n).map{|i| A(i)}.flatten
end
p A350889(14)
CROSSREFS
Row sums give A168657.
Sequence in context: A140356 A119963 A057790 * A224697 A052307 A067059
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jan 21 2022
STATUS
approved