[go: up one dir, main page]

login
A349438
Dirichlet convolution of A000027 with A349348 (Dirichlet inverse of A252463), where A252463 shifts the prime factorization of odd numbers one step towards smaller primes and divides even numbers by two.
4
1, 1, 1, 1, 2, 0, 2, 1, 3, 0, 4, -1, 2, 0, 2, 1, 4, -1, 2, -2, 2, 0, 4, -2, 10, 0, 9, -2, 6, -4, 2, 1, 4, 0, 4, -4, 6, 0, 2, -4, 4, -4, 2, -4, 6, 0, 4, -3, 14, -4, 4, -2, 6, -6, 8, -4, 2, 0, 6, -6, 2, 0, 6, 1, 4, -8, 6, -4, 4, -8, 4, -6, 2, 0, 10, -2, 8, -4, 6, -6, 27, 0, 4, -6, 8, 0, 6, -8, 6, -16, 4, -4, 2, 0, 4
OFFSET
1,5
COMMENTS
Convolving this sequence with A348045 gives Euler phi, A000010.
It might first seem that A000265(a(p^k)) = p^(k-1) for all odd primes and all exponents k >= 1, but this does not hold for prime 37. However, with p=37, identity A065330(A349438(37^k)) = 37^(k-1) seems to hold for all exponents k >= 1. - Antti Karttunen, Nov 20 2021
FORMULA
a(n) = Sum_{d|n} d * A349348(n/d).
MATHEMATICA
f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := If[EvenQ[n], n/2, Times @@ f @@@ FactorInteger[n]]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A252463(n) = if(!(n%2), n/2, A064989(n));
memoA349348 = Map();
A349348(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349348, n, &v), v, v = -sumdiv(n, d, if(d<n, A252463(n/d)*A349348(d), 0)); mapput(memoA349348, n, v); (v)));
A349438(n) = sumdiv(n, d, d*A349348(n/d));
CROSSREFS
Cf. A000027, A064989, A252463, A349348, A349437 (Dirichlet inverse), A349439 (sum with it).
Sequence in context: A074397 A345039 A082023 * A078152 A339242 A339222
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 18 2021
STATUS
approved