[go: up one dir, main page]

login
A348595
Triangle read by rows: Number of walks from (0,0) to (3n,3k) on the square lattice with up and right steps where squares (x,y)=(1,1) mod 3 or (x,y)=(2,2) mod 3 are not entered.
3
1, 1, 4, 1, 8, 28, 1, 12, 64, 212, 1, 16, 116, 520, 1676, 1, 20, 184, 1052, 4288, 13604, 1, 24, 268, 1872, 9316, 35784, 112380, 1, 28, 368, 3044, 17976, 81708, 301440, 940020, 1, 32, 484, 4632, 31740, 167376, 713940, 2558280, 7936620, 1, 36, 616, 6700, 52336, 314932, 1531000, 6231100, 21842560, 67494980
OFFSET
0,3
FORMULA
G.f.: (1-u*v)/(1-u-v-3*u*v) .
EXAMPLE
The array is symmetric; the non-redundant triangular part starts
1
1 4
1 8 28
1 12 64 212
1 16 116 520 1676
1 20 184 1052 4288 13604
1 24 268 1872 9316 35784 112380
1 28 368 3044 17976 81708 301440 940020
1 32 484 4632 31740 167376 713940 2558280 7936620
MAPLE
A348595 := proc(n, k)
g := (1-u*v)/(1-u-v-3*u*v) ;
coeftayl(%, u=0, n) ;
coeftayl(%, v=0, k) ;
end proc:
seq(seq( A348595(n, k), k=0..n), n=0..10) ;
MATHEMATICA
T[n_, k_] := Module[{u, v}, SeriesCoefficient[(1 - u v)/(1 - u - v - 3 u v), {u, 0, n}] // SeriesCoefficient[#, {v, 0, k}]&];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)
CROSSREFS
Cf. A085363 (diagonal), A307584 (walks to (3n+1,3k))
Sequence in context: A366399 A100235 A089072 * A036177 A360131 A177841
KEYWORD
nonn,tabl,easy
AUTHOR
R. J. Mathar, Jan 26 2022
STATUS
approved